Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 439-445   https://doi.org/10.1007/s11467-014-0433-1
  RESEARCH ARTICLE 本期目录
Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image
Zhi-Bo Ni1,Xing-Long Chen2,Hong-Bo Fu1,Jing-Ge Wang1,Feng-Zhong Dong1,*()
1. Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Anhui Provincial Key Laboratory of Photonic Devices and Materials, Hefei 230031, China
2. School of Instrument Science & Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
 全文: PDF(524 KB)  
Abstract

To reduce the influence of laser-induced breakdown spectroscopy (LIBS) experimental parameter fluctuations to quantitative analysis of slag components, a normalization method using integral intensity of plasma image was proposed and a series of experiments with slag samples were performed. Mg II 279.55 nm, Ca II 396.85 and Ca I 422.67 nm were selected as analytical lines, and analytical curves of reference mass fractions versus spectral line intensities were established. With the increment of set threshold for edge extraction of plasma image, the determination coefficients and relative standard deviations of analytical curves were improved gradually and reached the optimum values when the threshold was equal to 10 000. Comparing with the results without normalization and normalized by whole spectrum area, the relativity between spectral line intensity and mass fraction can be enhanced efficiently after normalized by integral intensity of plasma image. The verification experiments with Ti alloy samples further confirmed the conclusions mentioned above.

Key wordslaser-induced breakdown spectroscopy    analytical curve    plasma image    normalization
收稿日期: 2014-03-03      出版日期: 2014-08-26
Corresponding Author(s): Feng-Zhong Dong   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 439-445.
Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image. Front. Phys. , 2014, 9(4): 439-445.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0433-1
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/439
1 The Ministry of Human Resources and Social Security Office, Metallurgical Principle, Beijing: China Labour and Social Security Publishing House, 2011
2 M. Kraushaar, R. Noll, and H. U. Schmitz, Slag Analysis with Laser-Induced Breakdown Spectrometry, Appl. Spectrosc., 2003, 57(10): 1282
doi: 10.1366/000370203769699171
3 R. Noll, Laser-Induced Breakdown Spectroscopy-Fundamentals and Applications, Springer, 2012
doi: 10.1007/978-3-642-20668-9
4 C. L. Moreno, S. Palanco, and J. J. Laserna, Quantitative analysis of samples at high temperature with remote laserinduced breakdown spectrometry using a room-temperature calibration plot, Spectrochim. Acta B At. Spectrosc., 2005, 60(7-8): 1034
doi: 10.1016/j.sab.2005.05.037
5 Z. Wang, T.B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys., 2014
doi: 10.1007/s11467-013-0410-0
6 F. Z. Dong, X. D. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys., 2012, 7(6): 679
doi: 10.1007/s11467-012-0263-y
7 S. C. Yao, J. D. Lu, C. L. Xie, P. Li, S. H. Pan, J. Li, and Y. Liu, Quantitative analysis of laser induced carbon plasma by intensity ratio calibration, High Power Laser and Particle Beams, 2008, 20(7): 1089 (in Chinese)
8 B. C. Windom and D. W. Hahn, Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response, J. Anal. At. Spectrom., 2009, 24(12): 1665
doi: 10.1039/b913495f
9 L. C. Nunes, J. W. Batista Braga, L. C. Trevizan, P. Florencio de Souza, G. G. Arantes de Carvalho, D. S. Junior, R. J. Poppi, and F. J. Krug, Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves, J. Anal. At. Spectrom., 2010, 25(9): 1453
doi: 10.1039/c003620j
10 J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laserinduced breakdown spectroscopy, Anal. Bioanal. Chem., 2011, 400(10): 3261
doi: 10.1007/s00216-011-4865-y
11 Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2289
doi: 10.1039/c1ja10041f
12 B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere, Spectrochim. Acta B At. Spectrosc., 2006, 61(3): 301
doi: 10.1016/j.sab.2006.02.003
13 F. Bredice, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Real time measurement of the electron density of a laser generated plasma using a RC circuit, Spectrochim. Acta B At. Spectrosc., 2007, 62(8): 836
doi: 10.1016/j.sab.2007.06.011
14 L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach, Spectrochim. Acta B At. Spectrosc., 2005, 60(7-8): 1186
doi: 10.1016/j.sab.2005.06.008
15 F. J. Fortes, M. Cortes, M. D. Simon, L. M. Cabalin, and J. J. Laserna, Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry, Anal. Chim. Acta, 2005, 554(1-2): 136
doi: 10.1016/j.aca.2005.08.081
16 J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: Correlation analysis with plasma-induced current versus continuum background, J. Anal. At. Spectrom., 2005, 20(1): 53
doi: 10.1039/b411719k
17 V. Sturm, H. U. Schmitz, T. Reuter, T. Reuter, R. Fleige, and R. Noll, Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 2008, 63(10): 1167
doi: 10.1016/j.sab.2008.08.004
18 Z. Wang, L. Li, L. West, Z. Li, and W. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc., 2012, 68: 58
doi: 10.1016/j.sab.2012.01.005
19 J. Yu, Q. L. Ma, V. Motto-Ros, W. Q. Lei, X. C. Wang, and X. S.Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front. Phys., 2012, 7(6): 649
doi: 10.1007/s11467-012-0251-2
20 W. Lei, Temporal and spatial characteristics of laser-induced plasma on organic materials and quantitative analysis of the contained inorganic elements, East China Normal University, Shanghai, 2012
21 W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, Time-resolved characterization of laser-induced plasma from fresh potatoes, Spectrochim. Acta B At. Spectrosc., 2009, 64(9): 891
doi: 10.1016/j.sab.2009.07.015
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed