Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 100506-    DOI: 10.1007/s11467-015-0473-1
  RESEARCH ARTICLE 本期目录 |  
Rectification and phase locking of graphite
Zhen-Bin Zhang1,Ru-Juan Jia1,Jasmina Tekić2,Yang Yang1,Cang-Long Wang3,Jia-Wei Li4,Xiao-Yun Wang5,Wen-Shan Duan1(),Lei Yang3,*()
1. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
2. Theoretical Physics Department 020,“Vinⅶca” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4. Department of Chemistry, Northwest Normal University, Lanzhou 730070, China
5. Department of Mathematics and Physics, Lanzhou Jiao Tong University, Lanzhou 730070, China
全文: PDF(413 KB)  
Abstract

Rectification phenomena and the phase locking in a two-dimensional overdamped Frenkel–Kontorova model with a graphite periodic substrate were studied. The presence of dc and ac forces in the longitudinal direction causes the appearance of dynamicalmode locking and the steps in the response function of the system. On the other hand, the presence of an ac force in the transverse direction causes the appearance of rectification, even though there is no net dc force in the transverse direction. It is found that whereas the longitudinal velocity increases in a series of steps, rectification in the transverse direction can occur only between two neighbor steps. The amplitude and phase of the external ac driving force affect the depinning force, rectification of the system and particles trajectories.

Key wordsclassical transport    friction and lubrication    computer simulation of molecular and particle dynamics
收稿日期: 2014-12-17      出版日期: 2015-08-17
引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 100506-.
Zhen-Bin Zhang, Ru-Juan Jia, Jasmina Tekić, Yang Yang, Cang-Long Wang, Jia-Wei Li, Xiao-Yun Wang, Wen-Shan Duan, Lei Yang. Rectification and phase locking of graphite. Front. Phys. , 2015, 10(4): 100506-.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0473-1      或      http://academic.hep.com.cn/fop/CN/Y2015/V10/I4/100506
1 S. Shapiro, Josephson currents in superconducting tunneling: The effect of microwaves and other observations, Phys. Rev. Lett. 11(2), 80 (1963)
doi: 10.1103/PhysRevLett.11.80
2 C. C. Grimes and S. Shapiro, Millimeter-wave mixing with Josephson junctions, Phys. Rev. 169(2), 397 (1968)
doi: 10.1103/PhysRev.169.397
3 G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)
doi: 10.1103/RevModPhys.60.1129
4 R. E. Thorne, J. S. Hubacek, W. G. Lyons, J. W. Lyding, and J. R. Tucker, ac-dc interference, complete mode locking, and origin of coherent oscillations in sliding charge-densitywave systems, Phys. Rev. B 37(17), 10055 (1988)
doi: 10.1103/PhysRevB.37.10055
5 G. Kriza, G. Quirion, O. Traetteberg, W. Kang, and D. Jérome, Shapiro interference in a spin-density-wave system, Phys. Rev. Lett. 66(14), 1922 (1991)
doi: 10.1103/PhysRevLett.66.1922
6 J. McCarten, D. A. DiCarlo, M. P. Maher, T. L. Adelman, and R. E. Thorne, Charge-density-wave pinning and finitesize effects in NbSe3, Phys. Rev. B 46(8), 4456 (1992)
doi: 10.1103/PhysRevB.46.4456
7 S. N. Coppersmith and P. B. Littlewood, Interference phenomena and mode locking in the model of deformable sliding charge-density waves, Phys. Rev. Lett. 57(15), 1927 (1986)
doi: 10.1103/PhysRevLett.57.1927
8 C. Reichhardt, C. J. O. Reichhardt, and M. B. Hastings, Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives, Phys. Rev. B 69(5), 056115 (2004)
doi: 10.1103/PhysRevE.69.056115
9 J. Y. Lin, M. Gurvitch, S. K. Tolpygo, A. Bourdillon, S. Y. Hou, and J. M. Phillips, Flux pinning in YaBa2Cu3O7-δ thin films with ordered arrays of columnar defects, Phys. Rev. B 54(18), R12717 (1996)
doi: 10.1103/PhysRevB.54.R12717
10 T. Giamarchi and P. Le Doussal, Moving glass phase of driven lattices, Phys. Rev. Lett. 76(18), 3408 (1996)
doi: 10.1103/PhysRevLett.76.3408
11 D. Perez de Lara, L. Dinis, E. M. Gonzalez, J. M. R. Parrondo, J. V. Anguita, and J. L. Vicent, Rocking ratchets in nanostructured superconducting–magnetic hybrids, J. Phys.: Condens. Matter 21(25), 254204 (2009)
doi: 10.1088/0953-8984/21/25/254204
12 J. C. Ciria and C. Giovannella, Vortex dynamics in classical Josephson junction arrays: Models and recent experimental developments, J. Phys.: Condens. Matter 10(7), 1453 (1998)
doi: 10.1088/0953-8984/10/7/002
13 C. Reichhardt and C. J. Olson Reichhardt, Structural transitions and dynamical regimes for directional locking of vortices and colloids driven over periodic substrates, J. Phys.: Condens. Matter 24(22), 225702 (2012)
doi: 10.1088/0953-8984/24/22/225702
14 C. Reichhardt and C. J. O. Reichhardt, Local melting and drag for a particle driven through a colloidal crystal, Phys. Rev. Lett. 92(10), 108301 (2004)
doi: 10.1103/PhysRevLett.92.108301
15 M. Mikulis, C. J. Olson Reichhardt, C. Reichhard, R. T. Scalettar, and G. T. Zimányi, Reentrant disordering of colloidal molecular crystals on 2D periodic substrates, J. Phys.: Condens. Matter 16, 7909 (2004)
doi: 10.1088/0953-8984/16/45/013
16 B. D. Josephson, Supercurrents through barriers, Adv. Phys. 14(56), 419 (1965)
doi: 10.1080/00018736500101091
17 S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb, Fractional giant Shapiro steps and spatially correlated phase motion in 2D Josephson arrays, Phys. Rev. Lett. 64(6), 693 (1990)
doi: 10.1103/PhysRevLett.64.693
18 H. B. Wang, S. M. Kim, S. Urayama, M. Nagao, T. Hatano, S. Arisawa, T. Yamashita, and P. H. Wu, Shapiro steps observed in annular intrinsic Josephson junctions at low microwave frequencies, Appl. Phys. Lett. 88(6), 063503 (2006)
doi: 10.1063/1.2172010
19 P. Komissinskiy, G. A. Ovsyannikov, K. Y. Constantinian, Y. V. Kislinski, I. V. Borisenko, I. I. Soloviev, V. K. Kornev, E. Goldobin, and D. Winkler, High-frequency dynamics of hybrid oxide Josephson heterostructures, Phys. Rev. B 78(2), 024501 (2008)
doi: 10.1103/PhysRevB.78.024501
20 R. de Luca, Ratchet potential in superconducting quantum interference devices containing a double-barrier junction, Supercond. Sci. Technol. 22(8), 085008 (2009)
doi: 10.1088/0953-2048/22/8/085008
21 Y. Yang, W. S. Duan, L. Yang, J. M. Chen, and M. M. Lin, Rectification and phase locking in overdamped two-dimensional Frenkel–Kontorova model, Europhys. Lett. 93(1), 16001 (2011)
doi: 10.1209/0295-5075/93/16001
22 B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
doi: 10.1063/1.1862552
23 B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
doi: 10.1103/PhysRevLett.97.124302
24 C. L. Wang, J. Teki?, W. S. Duan, Z. G. Shao, and L. Yang, Existence and stability of the resonant phenomena in the dcand ac-driven overdamped Frenkel–Kontorova model with the incommensurate structure, Phys. Rev. E 84(4), 046603 (2011)
doi: 10.1103/PhysRevE.84.046603
25 C. L. Wang, J. Teki?, W. S. Duan, Z. G. Shao, and L. Yang, Ratchet effect and amplitude dependence of phase locking in a two-dimensional Frenkel–Kontorova model, J. Chem. Phys. 138(3), 034307 (2013)
doi: 10.1063/1.4776226
26 O. M. Braun and Y. S. Kivshar, The Frenkel–Kontorova Model, Berlin: Springer, 2003
27 J. Teki?, O. M. Braun, and B. Hu, Dynamic phases in the two-dimensional underdamped driven Frenkel–Kontorova model, Phys. Rev. E 71(2), 026104 (2005)
doi: 10.1103/PhysRevE.71.026104
28 J. A. van den Ende, A. S. de Wijn, and A. Fasolino, The effect of temperature and velocity on superlubricity, J. Phys.: Condens. Matter 24(44), 445009 (2012)
doi: 10.1088/0953-8984/24/44/445009
29 C. F. Kreiner and J. Zimmer, Existence of subsonic heteroclinic waves for the Frenkel–Kontorova model with piecewise quadratic on-site potential, Nonlinearity 24(4), 1137 (2011)
doi: 10.1088/0951-7715/24/4/007
30 B. Hu, B. Li, and H. Zhao, Mode-locking of incommensurate phase by quantum zero-point energy in the Frenkel–Kontorova model, Europhys. Lett. 53(3), 342 (2001)
doi: 10.1209/epl/i2001-00159-8
31 O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1-2), 1 (1998)
doi: 10.1016/S0370-1573(98)00029-5
32 L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel–Kontorova model, Adv. Phys. 45(6), 505 (1996)
doi: 10.1080/00018739600101557
33 F. Falo, L. M. Floría, P. J. Martínez, and J. J. Mazo, Unlocking mechanism in the ac dynamics of the Frenkel–Kontorova model, Phys. Rev. B 48(10), 7434 (1993)
doi: 10.1103/PhysRevB.48.7434
34 M. Inui and S. Doniach, Use of few-domain classical models to study mode locking in charge-density-wave systems, Phys. Rev. B 35(12), 6244 (1987)
doi: 10.1103/PhysRevB.35.6244
35 M. O. Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71(10), 1477 (1993)
doi: 10.1103/PhysRevLett.71.1477
36 R. D. Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science 276(5314), 917 (1997)
doi: 10.1126/science.276.5314.917
37 J. L. Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett. 84(2), 258 (2000)
doi: 10.1103/PhysRevLett.84.258
38 R. Bartussek, P. H?nggi, and J. C. Kissner, Periodically rocked thermal ratchets, Europhys. Lett. 28(7), 459 (1994)
doi: 10.1209/0295-5075/28/7/001
39 C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J. Y. Courtois, and G. Grynberg, Ratchet for cold rubidium atoms: The asymmetric optical lattice, Phys. Rev. Lett. 82(4), 851 (1999)
doi: 10.1103/PhysRevLett.82.851
40 H. Linke, T. E. Humphrey, A. Lofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, Experimental tunneling ratchets, Science 286(5448), 2314 (1999)
doi: 10.1126/science.286.5448.2314
41 A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, V. Metlushko, F. Gozzini, B. Ilic, W. C. Uhlig, and J. Unguris, Manipulation of the vortex motion in nanostructured ferromagnetic/superconductor hybrids, Appl. Phys. Lett. 90(18), 182501 (2007)
doi: 10.1063/1.2734874
42 C. C. de Souza Silva, J. Van de Vondel, M. Morelle, and V. V. Moshchalkov, Controlled multiple reversals of a ratchet effect, Nature 440(7084), 651 (2006)
doi: 10.1038/nature04595
43 Z. Farkas, P. Tegzes, A. Vukics, and T. Vicsek, Transitions in the horizontal transport of vertically vibrated granular layers, Phys. Rev. E 60(6), 7022 (1999)
doi: 10.1103/PhysRevE.60.7022
44 J. F. Wambaugh, C. Reichhardt, C. J. Olson, F. Marchesoni, and F. Nori, Superconducting fluxon pumps and lenses, Phys. Rev. Lett. 83(24), 5106 (1999)
doi: 10.1103/PhysRevLett.83.5106
45 I. Zapata, R. Bartussek, F. Sols, and P. H?nggi, Voltage rectification by a SQUID ratchet, Phys. Rev. Lett. 77(11), 2292 (1996)
doi: 10.1103/PhysRevLett.77.2292
46 W. D. Volkmuth and R. H. Austin, DNA electrophoresis in microlithographic arrays, Nature 358(6387), 600 (1992)
doi: 10.1038/358600a0
47 T. A. J. Duke, and R. H. Austin, Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80(7), 1552 (1998)
doi: 10.1103/PhysRevLett.80.1552
48 J. L. Viovy, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms, Rev. Mod. Phys. 72(3), 813 (2000)
doi: 10.1103/RevModPhys.72.813
49 C. Reichhardt and F. Nori, Phase locking, Devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning, Phys. Rev. Lett. 82(2), 414 (1999)
doi: 10.1103/PhysRevLett.82.414
50 P. T. Korda, M. B. Taylor, and D. G. Grier, Kinetically locked-in colloidal transport in an array of optical tweezers, Phys. Rev. Lett. 89(12), 128301 (2002)
doi: 10.1103/PhysRevLett.89.128301
51 D. G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
doi: 10.1038/nature01935
52 G. A. Cecchi and M. O. Magnasco, Negative resistance and rectification in Brownian transport, Phys. Rev. Lett. 76(11), 1968 (1996)
doi: 10.1103/PhysRevLett.76.1968
53 R. Eichhorn, P. Reimann, and P. H?nggi, Brownian motion exhibiting absolute negative mobility, Phys. Rev. Lett. 88(19), 190601 (2002)
doi: 10.1103/PhysRevLett.88.190601
54 Z. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89(15), 154102 (2002)
doi: 10.1103/PhysRevLett.89.154102
55 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100), 282 (2006)
doi: 10.1038/nature04969
56 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)
doi: 10.1038/nnano.2008.210
57 D. Yu and L. Dai, Appl. Phys. Lett. 96, 14310 (2010)
58 L. Huang, Y. C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick, Transmission and scarring in graphene quantum dots, J. Phys.: Condens. Matter 21(34), 344203 (2009)
doi: 10.1088/0953-8984/21/34/344203
59 L. Ying, L. Huang, Y. C. Lai, and Y. Zhang, Effect of geometrical rotation on conductance fluctuations in graphene quantum dots, J. Phys.: Condens. Matter 25(10), 105802 (2013)
doi: 10.1088/0953-8984/25/10/105802
60 L. Ying, L. Huang, Y. C. Lai, and C. Grebogi, Conductance fluctuations in graphene systems: The relevance of classical dynamics, Phys. Rev. B 85(24), 245448 (2012)
doi: 10.1103/PhysRevB.85.245448
61 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. ?zyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)
doi: 10.1038/nnano.2010.132
62 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. B. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
doi: 10.1038/nature06016
63 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Electromechanical resonators from graphene sheets, Science 315(5811), 490 (2007)
doi: 10.1126/science.1136836
64 Q. Zheng, B. Jiang, S. Liu, Yu. Weng, L. Lu, Q. Xue, J. Zhu, Q. Jiang, S. Wang, and L. Peng, Self-retracting motion of graphite microflakes, Phys. Rev. Lett. 100(6), 067205 (2008)
doi: 10.1103/PhysRevLett.100.067205
65 V. V. Deshpande, H. Y. Chiu, H. W. Ch. Postma, C. Miko, L. Forro, and M. Bockrath, Carbon nanotube linear bearing nanoswitches, Nano Lett. 6(6), 1092 (2006)
doi: 10.1021/nl052513f
66 A. Subramanian, L. X. Dong, B. J. Nelson, and A. Ferreira, Supermolecular switches based on multiwalled carbon nanotubes, Appl. Phys. Lett. 96(7), 073116 (2010)
doi: 10.1063/1.3327514
67 E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon nanotubes, Phys. Rev. B 80(16), 165427 (2009)
doi: 10.1103/PhysRevB.80.165427
68 E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Nanoresonator based on relative vibrations of the walls of carbon nanotubes, Fullerenes, Nanotubes, and Carbon Nanostructures 18(4–6), 523 (2010)
doi: 10.1080/1536383X.2010.488524
69 I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, Yu. E. Lozovik, and B. V. Potapkin, Interlayer interaction and relative vibrations of bilayer graphene, Phys. Chem. Chem. Phys. 13(13), 5687 (2011)
doi: 10.1039/c0cp02614j
70 Yu. E. Lozovik and A. M. Popov, Properties and nanotechnological applications of nanotubes, Physics-Uspekhi 50(7), 749 (2007)
doi: 10.1070/PU2007v050n07ABEH006323
71 J. J. Vilatela, J. A. Elliott, and A. H. Windle, A model for the strength of yarn-like carbon nanotube fibers, ACS Nano 5(3), 1921 (2011)
doi: 10.1021/nn102925a
72 C. Reichhardt, C. J. Olson, and M. B. Hastings, Rectification and phase locking for particles on symmetric twodimensional periodic substrates, Phys. Rev. Lett. 89(2), 024101 (2002)
doi: 10.1103/PhysRevLett.89.024101
73 B. Hu and J. Teki?, Frequency oscillations of the Shapiro steps, Appl. Phys. Lett. 90(10), 102119 (2007)
doi: 10.1063/1.2710788
74 B. Hu and J. Teki?, Amplitude and frequency dependence of the Shapiro steps in the dc- and ac-driven overdamped Frenkel–Kontorova model, Phys. Rev. E 75(5), 056608 (2007)
doi: 10.1103/PhysRevE.75.056608
75 J. Teki?, and B. Hu, Properties of the Shapiro steps in the ac driven Frenkel–Kontorova model with deformable substrate potential, Phys. Rev. E 81(3), 036604 (2010)
doi: 10.1103/PhysRevE.81.036604
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed