Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 107301   https://doi.org/10.1007/s11467-015-0468-y
  RESEARCH ARTICLE 本期目录
First-principle study on the optical response of phosphorene
Jia-He Lin1,Hong Zhang1,2,*(),Xin-Lu Cheng2
1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
 全文: PDF(757 KB)  
Abstract

The optical response of phosphorene nanostructures was studied using time-dependent density functional theory (TDDFT). Compared with the absorption spectrum of graphene, that of the phosphorene nanostructure exhibits high absorbance in the ultraviolet region, which indicates a high light absorptivity. In a low-energy resonance zone, a spectral band extends to the entire near-infrared regions. When the impulse excitation polarizes in the armchair-edge direction, the low-energy plasmon in a few-layer phosphorene nanostructure shows an apparent long-range charge-transfer excitation but is significantly less pronounced along the zigzag-edge direction. The edge configuration significantly affects the absorption spectrum of monolayer phosphorene nanostructures. The armchair-edge and the zigzag-edge serve different functions in the absorption spectrum. Moreover, the absorption spectrum of the few-layer phosphorene nanostructure changes with the number of layers when the impulse excitation polarizes in the armchair-edge direction. In addition, the change in the low-energy resonance zone is significantly different from that in the high-energy resonance zone.

收稿日期: 2014-12-31      出版日期: 2015-08-17
Corresponding Author(s): Hong Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 107301.
Jia-He Lin, Hong Zhang, Xin-Lu Cheng. First-principle study on the optical response of phosphorene. Front. Phys. , 2015, 10(4): 107301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0468-y
https://academic.hep.com.cn/fop/CN/Y2015/V10/I4/107301
1 K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. V. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
2 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
3 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
4 H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 13(5), 1991 (2013)
https://doi.org/10.1021/nl400044m
5 M. Jablan, H. Buljan, and M. Soljacic, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
https://doi.org/10.1103/PhysRevB.80.245435
6 F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Graphene plasmonics: A platform for strong light–matter interactions, Nano Lett. 11(8), 3370 (2011)
https://doi.org/10.1021/nl201771h
7 H. A. Atwater, The promise of plasmonics, Sci. Am. 296(4), 56 (2007)
https://doi.org/10.1038/scientificamerican0407-56
8 E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
https://doi.org/10.1126/science.1114849
9 A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)
https://doi.org/10.1126/science.1198258
10 L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature 467(7313), 305 (2010)
https://doi.org/10.1038/nature09405
11 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
12 Y. Wu, Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472(7341), 74 (2011)
https://doi.org/10.1038/nature09979
13 Y. L. Chen, X. B. Feng, and D. D. Hou, Optical absorptions in monolayer and bilayer grapheme, Acta Phys. Sin. 62(18), 187301 (2013)
14 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
15 A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
16 H. Liu and P. D. Ye, MoS2 dual-gate MOSFET with atomiclayer-deposited Al2O3 as top-gate dielectric, IEEE Electron Device Lett. 33(4), 546 (2012)
https://doi.org/10.1109/LED.2012.2184520
17 H. Liu, A. T. Neal, and P. D. Ye, Channel length scaling of MoS2 MOSFETs, ACS Nano 6(10), 8563 (2012)
https://doi.org/10.1021/nn303513c
18 Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 11(9), 3768 (2011)
https://doi.org/10.1021/nl2018178
19 B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)
https://doi.org/10.1021/nn203715c
20 H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer Mo2 transistors, Nano Lett. 12(9), 4674 (2012)
https://doi.org/10.1021/nl302015v
21 E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)
https://doi.org/10.1038/506019a
22 Y. Xu, B. Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.C. Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
23 L. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, Hua Wu, D. L. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 2014, 9(5), 372
https://doi.org/10.1038/nnano.2014.35
24 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
25 E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)
https://doi.org/10.1038/506019a
26 J. Dai and X. C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thinfilm solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
https://doi.org/10.1021/jz500409m
27 M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)
https://doi.org/10.1021/nl5008085
28 V. Tran and L. Yang, Scaling laws for the band gap and optical response of phosphorene nanoribbons, Phys. Rev. B 89(24), 245407 (2014)
https://doi.org/10.1103/PhysRevB.89.245407
29 S. A. Fischer, B. F. Habenicht, A. B. Madrid, W. R. Duncan, and O. V. Prezhdo, Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping, J. Chem. Phys. 134(2), 024102 (2011)
https://doi.org/10.1063/1.3526297
30 M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun. 151(1), 60 (2003)
https://doi.org/10.1016/S0010-4655(02)00686-0
31 A. Rubio, J. A. Alonso, J. M. Lopez, and M. J. Stott, Surface plasmon excitations in C60, C60K and C60H clusters, Physica B 183(3), 247 (1993)
https://doi.org/10.1016/0921-4526(93)90035-5
32 A. G. Marinopoulos, L. Reining, V. Olevano, A. Rubio, T. Pichler, X. Liu, M. Knupfer, and J. Fink, Anisotropy and interplane interactions in the dielectric response of graphite, Phys. Rev. Lett. 89(7), 076402 (2002)
https://doi.org/10.1103/PhysRevLett.89.076402
33 A. G. Marinopoulos, L. Reining, A. Rubio, and N. Vast, Optical and loss spectra of carbon nanotubes: Depolarization effects and intertube interactions, Phys. Rev. Lett. 91(4), 046402 (2003)
https://doi.org/10.1103/PhysRevLett.91.046402
34 K. De Blauwe, D. J. Mowbray, Y. Miyata, P. Ayala, H. Shiozawa, A. Rubio, P. Hoffmann, H. Kataura, and T. Pichler, Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality, Phys. Rev. B 82(12), 125444 (2010)
https://doi.org/10.1103/PhysRevB.82.125444
35 K. Yabana and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B 54(7), 4484 (1996)
https://doi.org/10.1103/PhysRevB.54.4484
36 C. Jamorski, M. E. Casida, and D. R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys. 104(13), 5134 (1996)
https://doi.org/10.1063/1.471140
37 J. O. Joswig, L. O. Tunturivuori, and R. M. Nieminenc, Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory, J. Chem. Phys. 128(1), 014707 (2008)
https://doi.org/10.1063/1.2814161
38 C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58(7), 3641 (1998)
https://doi.org/10.1103/PhysRevB.58.3641
39 A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, Firstprinciples study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+U calculations, Phys. Rev. B 78(3), 0351071 (2008)
https://doi.org/10.1103/PhysRevB.78.035107
40 A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)
https://doi.org/10.1103/PhysRevB.58.4345
41 H. Yin and H. Zhang, Plasmons in graphene nanostructures, J. Appl. Phys. 111(10), 103502 (2012)
https://doi.org/10.1063/1.4706566
42 J. Guan, Z. Zhu, and D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study, Phys. Rev. Lett. 113, 046804 (2014)
https://doi.org/10.1103/PhysRevLett.113.046804
43 L. Yang, C. D. Spataru, S. G. Louie, and M. Y. Chou, Enhanced electron-hole interaction and optical absorption in a silicon nanowire, Phys. Rev. B 75(20), 201304 (2007) (R)
https://doi.org/10.1103/PhysRevB.75.201304
44 M. Reischle, G. J. Beirne, R. Roach, M. Jetter, and P. Michler, Influence of the dark exciton state on the optical and quantum optical properties of single quantum dots, Phys. Rev. Lett. 101(14), 146402 (2008)
https://doi.org/10.1103/PhysRevLett.101.146402
45 V. Tran, R. Soklaski, Y. Liang, and L. Yang, Tunable band gap and anisotropic optical response in few-layer black phosphorus, arXiv: 1402.4192, 2014
46 J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
47 N. Zeng, X.-Y. Jiang, Q. Gao, Y. He, and H. Ma, Linear polarization difference imaging and its potential applications, Appl. Opt. 48(35), 6734 (2009)
https://doi.org/10.1364/AO.48.006734
48 E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
https://doi.org/10.1038/35051009
49 N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
https://doi.org/10.1007/s11467-013-0305-0
50 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
https://doi.org/10.1007/s11467-013-0324-x
51 N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
https://doi.org/10.1007/s11467-013-0408-7
52 W.-J. Li, D.-X. Yao, and E. W. Carlson, Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon, Front. Phys. 9(4), 472 (2014)
https://doi.org/10.1007/s11467-014-0415-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed