Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 107404   https://doi.org/10.1007/s11467-015-0502-0
  RESEARCH ARTICLE 本期目录
Superconductivity and superfluidity as universal emergent phenomena
Mike Guidry1(),Yang Sun2,3,4,*()
1. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2. Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
4. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(406 KB)  
Abstract

Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and in superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as high-Tc SC in cuprates, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.

Key wordssuperconductivity    superfluidity
收稿日期: 2015-05-07      出版日期: 2015-08-17
Corresponding Author(s): Yang Sun   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 107404.
Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena. Front. Phys. , 2015, 10(4): 107404.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0502-0
https://academic.hep.com.cn/fop/CN/Y2015/V10/I4/107404
1 L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)
https://doi.org/10.1103/PhysRev.104.1189
2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
https://doi.org/10.1103/PhysRev.108.1175
3 A. Bohr, B. R. Mottelson, and D. Pines, Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state, Phys. Rev. 110(4), 936 (1958)
https://doi.org/10.1103/PhysRev.110.936
4 P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
https://doi.org/10.1103/PhysRev.112.1900
5 D. D. Osheroff, R. C. Richardson, and D. M. Lee, Evidence for a new phase of solid He3, Phys. Rev. Lett. 28(14), 885 (1972)
https://doi.org/10.1103/PhysRevLett.28.885
6 J. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Sch?fer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)
https://doi.org/10.1103/PhysRevLett.43.1892
7 J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986)
https://doi.org/10.1007/BF01303701
8 D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)
9 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
10 D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Stellar superfluids, arXiv: 1302.6626 (2013)
11 M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435(7045), 1047 (2005)
https://doi.org/10.1038/nature03858
12 Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
https://doi.org/10.1007/s11467-014-0448-7
13 W. Yi, W. Zhang, and X. L. Cui, Pairing superfluidity in spin-orbit coupled ultracold Fermi gases, Sci. China-Phys. Mech. Astron. 58(1), 014201 (2015)
https://doi.org/10.1007/s11433-014-5609-8
14 M. R. Norman, Unconventional superconductivity, arXiv: 1302.3176 (2013)
15 L. Fang, H. Q. Luo, P. Cheng, Z. S. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H.-H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1-xCox)2As2, Phys. Rev. B 80, 140508(R) (2009)
16 G. Knebel, D. Aoki, and J. Flouquet, Magnetism and superconductivity in CeRhIn5, arXiv: 0911.5223 (2009)
17 N. Kang, B. Salameh, P. Auban-Senzier, D. Jérome, C. R. Pasquier, and S. Brazovskii, Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure, Phys. Rev. B 81, 100509(R), (2010)
18 J. Tao, S. Li, X. Y. Zhu, H. Yang, and H. H. Wen, Growth and transport properties of CaFeAsF1-x single crystals, Sci. China-Phys. Mech. Astron. 57(4), 632 (2014)
https://doi.org/10.1007/s11433-014-5422-4
19 M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no double occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)
https://doi.org/10.1103/PhysRevB.70.184501
20 C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
https://doi.org/10.1007/978-1-4615-2405-2_3
21 C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B 168(4), 313 (1986)
https://doi.org/10.1016/0370-2693(86)91635-7
22 M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)
https://doi.org/10.1103/PhysRevB.63.134516
23 Y. Sun, M. W. Guidry, and C. L. Wu, Pairing gaps, pseudogaps, and phase diagrams for cuprate superconductors, Phys. Rev. B 75(13), 134511 (2007)
https://doi.org/10.1103/PhysRevB.75.134511
24 M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)
https://doi.org/10.1007/s11467-009-0068-9
25 M. Guidry, Y. Sun, and C.-L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)
https://doi.org/10.1007/s11467-010-0006-x
26 M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4-5), 367 (2011)
https://doi.org/10.1007/s11434-010-4282-1
27 F. Iachello and A. Arima, The Interacting Boson Model, Cambridge: Cambridge University Press, 1987
https://doi.org/10.1017/CBO9780511895517
28 R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)
https://doi.org/10.1006/aphy.1994.1108
29 F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford: Oxford University Press, 1995
30 W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032 (1987)
https://doi.org/10.1103/PhysRevLett.59.2032
31 P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Do?an, The magnetic excitation spectrum and thermodynamics of high-Tc superconductors, Science 284(5418), 1344 (1999)
https://doi.org/10.1126/science.284.5418.1344
32 J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors, Phys. Rev. Lett. 83(18), 3709 (1999)
https://doi.org/10.1103/PhysRevLett.83.3709
33 S. Raman, C. H. Malarkey, W. T. Milner, P. H. Jr Nestor, and P. H. Stelson, Transition probability, B(E2)↑, from the ground to the first-excited 2+ state of even-even nuclides, At. Data Nucl. Data Tables 36, 1 (1987)
https://doi.org/10.1016/0092-640X(87)90016-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed