Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 100401   https://doi.org/10.1007/s11467-015-0478-9
  RESEARCH ARTICLE 本期目录
Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium
Hongwei Xiong1,2,*()
1. Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(250 KB)  
Abstract

We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.

Key wordscold atoms    gravitational effect of quantum wave packet    precision measurement
收稿日期: 2015-04-21      出版日期: 2015-08-17
Corresponding Author(s): Hongwei Xiong   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 100401.
Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium. Front. Phys. , 2015, 10(4): 100401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0478-9
https://academic.hep.com.cn/fop/CN/Y2015/V10/I4/100401
1 S. Hawking, Black hole explosions? Nature 248(5443), 30 (1974)
https://doi.org/10.1038/248030a0
2 G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393(6687), 763 (1998)
https://doi.org/10.1038/31647
3 U. Jacob and T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation, Nat. Phys. 3(2), 87 (2007)
https://doi.org/10.1038/nphys506
4 I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, Probing Planck-scale physics with quantum optics, Nat. Phys. 8(5), 393 (2012)
https://doi.org/10.1038/nphys2262
5 R. J. Adler, H. Mueller, and M. L. Perl, A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry, Int. J. Mod. Phys. A 26(29), 4959 (2011)
https://doi.org/10.1142/S0217751X11054814
6 C. J. Hogan, Measurement of quantum fluctuations in geometry, Phys. Rev. D 77(10), 104031 (2008)
https://doi.org/10.1103/PhysRevD.77.104031
7 C. J. Hogan and M. G. Jackson, Holographic geometry and noise in matrix theory, Phys. Rev. D 79(12), 124009 (2009)
https://doi.org/10.1103/PhysRevD.79.124009
8 T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75(7), 1260 (1995)
https://doi.org/10.1103/PhysRevLett.75.1260
9 J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
10 J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
11 S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
https://doi.org/10.1007/BF02345020
12 P. C. W. Davies, Scalar production in Schwarzschild and Rindler metrics, J. Phys. A 8(4), 609 (1975)
https://doi.org/10.1088/0305-4470/8/4/022
13 W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14(4), 870 (1976)
https://doi.org/10.1103/PhysRevD.14.870
14 T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
https://doi.org/10.1088/0034-4885/73/4/046901
15 See, e.g., R. G. Cai, L. M. Cao, and N. Ohta, Friedmann equations from entropic force, Phys. Rev. D 81, 061501(R) (2010)
16 T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity, Phys. Rev. D 81(12), 124040 (2010)
https://doi.org/10.1103/PhysRevD.81.124040
17 F. W. Shu and Y. G. Gong, Equipartition of energy and the first law of thermodynamics at the apparent horizon, Int. J. Mod. Phys. D 20(04), 553 (2011)
https://doi.org/10.1142/S0218271811018883
18 M. Li and Y. Wang, Quantum UV/IR relations and holographic dark energy from entropic force, Phys. Lett. B 687(2-3), 243 (2010)
https://doi.org/10.1016/j.physletb.2010.03.042
19 T. W. Wang, Coulomb force as an entropic force, Phys. Rev. D 81(10), 104045 (2010)
https://doi.org/10.1103/PhysRevD.81.104045
20 P. Nicolini, Entropic force, noncommutative gravity, and ungravity, Phys. Rev. D 82(4), 044030 (2010)
https://doi.org/10.1103/PhysRevD.82.044030
21 Y. F. Cai and E. N. Saridakis, Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities, Phys. Lett. B 697(4), 280 (2011)
https://doi.org/10.1016/j.physletb.2011.02.020
22 R. Banerjee and B. R. Majhi, Statistical origin of gravity, Phys. Rev. D 81(12), 124006 (2010)
https://doi.org/10.1103/PhysRevD.81.124006
23 L. Modesto and A. Randono, Entropic corrections to Newton’s law, arXiv:1003.1998 (2010)
24 J. W. Lee, On the origin of entropic gravity and inertia, Found. Phys. 42(9), 1153 (2012)
https://doi.org/10.1007/s10701-012-9660-x
25 M. A. Santos and I. V. Vancea, Entropic law of force, emergent gravity and the uncertainty principle, Mod. Phys. Lett. A 27, 1250012 (2012), arXiv: 1002.2454
https://doi.org/10.1142/S0217732312500125
26 M. R. Setare and D. Momeni, Time varying gravitational constant G via entropic force, Commum. Theor. Phys. 56(4), 691 (2011)
https://doi.org/10.1088/0253-6102/56/4/17
27 E. P. Verlinde, On the origin of gravity and the laws of Newton, J. High Energy Phys. 04, 029 (2011)
28 A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
https://doi.org/10.1086/300499
29 S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
https://doi.org/10.1086/307221
30 P. J. E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75(2), 559 (2003)
https://doi.org/10.1103/RevModPhys.75.559
31 A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81(3), 1051 (2009)
https://doi.org/10.1103/RevModPhys.81.1051
32 N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Phys. Rev. Lett. 106(3), 038501 (2011)
https://doi.org/10.1103/PhysRevLett.106.038501
33 P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
https://doi.org/10.1209/epl/i2005-10163-6
34 G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Longlived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale, Phys. Rev. Lett. 97(6), 060402 (2006)
https://doi.org/10.1103/PhysRevLett.97.060402
35 F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, Quantum sensor for atomsurface interactions below 10 μm, Phys. Rev. A 79(1), 013409 (2009)
https://doi.org/10.1103/PhysRevA.79.013409
36 E. Hoskinson, Y. Sato, and R. Packard, Superfluid He4 interferometer operating near, Phys. Rev. B 74, 100509(R) (2006)
37 T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, A new generation of absolute gravimeters, Metrologia 32(3), 159 (1995)
https://doi.org/10.1088/0026-1394/32/3/004
38 G. d’Agostino, S. Desogus, A. Germak, C. Origlia, D. Quagliotti, G. Berrino, G. Corrado, V. d’Errico, and G. Ricciardi, The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology, Ann. Geophys. 51, 39 (2008)
39 S. Svitlov, P. Maslyk, C. Rothleitner, H. Hu, and L. J. Wang, Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter, Metrologia 47(6), 677 (2010)
https://doi.org/10.1088/0026-1394/47/6/007
40 W. A. Prothero and J. Goodkind, A superconducting gravimeter, Rev. Sci. Instrum. 39(9), 1257 (1968)
https://doi.org/10.1063/1.1683645
41 J. Goodkind, The superconducting gravimeter, Rev. Sci. Instrum. 70(11), 4131 (1999)
https://doi.org/10.1063/1.1150092
42 H. J. Paik, Superconducting tunable-diaphragm transducer for sensitive acceleration measurements, J. Appl. Phys. 47(3), 1168 (1976)
https://doi.org/10.1063/1.322699
43 M. V. Moody and H. J. Paik, Gauss’s law test of gravity at short range, Phys. Rev. Lett. 70(9), 1195 (1993)
https://doi.org/10.1103/PhysRevLett.70.1195
44 S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68(4), 046005 (2003)
https://doi.org/10.1103/PhysRevD.68.046005
45 R. Penrose, Twistor algebra, J. Math. Phys. 8(2), 345 (1967)
https://doi.org/10.1063/1.1705200
46 L. Smolin, Newtonian gravity in loop quantum gravity, arXiv: 1001.3668 (2010)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed