Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 107402   https://doi.org/10.1007/s11467-015-0465-1
  RESEARCH ARTICLE 本期目录
Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator
Dingping Li1,2(),Baruch Rosenstein3,4,*(),B. Ya. Shapiro5(),I. Shapiro5
1. School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
3. Electrophysics Department, National Chiao Tung University, Hsinchu 30050, Taiwan, China
4. Physics Department, Ariel University, Ariel 40700, Israel
5. Physics Department, Bar-Ilan University, 52900 Ramat-Gan, Israel
 全文: PDF(431 KB)  
Abstract

New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.

Key wordstopological insulator    Weyl semimetal    superconductivity    quantum criticality
收稿日期: 2014-08-25      出版日期: 2015-06-11
Corresponding Author(s): Baruch Rosenstein   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 107402.
Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator. Front. Phys. , 2015, 10(3): 107402.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0465-1
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/107402
1 S. Q. Shen, Topological Insulators, Heidelberg: Springer-Verlag, 2012
https://doi.org/10.1007/978-3-642-32858-9
2 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
3 M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
4 M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge: Cambridge University Press, 2012
https://doi.org/10.1017/CBO9781139031080
5 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
6 A. M. Black-Schaffer and S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Phys. Rev. B 75(13), 134512 (2007)
https://doi.org/10.1103/PhysRevB.75.134512
7 S. Pathak, V. B. Shenoy, and G. Baskaran, Possible hightemperature superconducting state with a d+id pairing symmetry in doped graphene, Phys. Rev. B 81(8), 085431 (2010)
https://doi.org/10.1103/PhysRevB.81.085431
8 R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys. 8(2), 158 (2012)
https://doi.org/10.1038/nphys2208
9 B. Roy and I. F. Herbut, Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter, Phys. Rev. B 82(3), 035429 (2010)
https://doi.org/10.1103/PhysRevB.82.035429
10 D. V. Khveshchenko, Ghost excitonic insulator transition in layered graphite, Phys. Rev. Lett. 87(24), 246802 (2001)
https://doi.org/10.1103/PhysRevLett.87.246802
11 O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Gap generation and semimetal–insulator phase transition in graphene, Phys. Rev. B 81(7), 075429 (2010)
https://doi.org/10.1103/PhysRevB.81.075429
12 B. Rosenstein and B. J. Warr, Dynamical symmetry breaking in 2+1 dimensions, Phys. Lett. B 218(4), 465 (1989)
https://doi.org/10.1016/0370-2693(89)91448-2
13 M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Monte Carlo study of the semimetal–insulator phase transition in monolayer graphene with a realistic interelectron interaction potential, Phys. Rev. Lett. 111(5), 056801 (2013)
https://doi.org/10.1103/PhysRevLett.111.056801
14 J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and A. Yacoby, Local compressibility measurements of correlated states in suspended bilayer graphene, Phys. Rev. Lett. 105(25), 256806 (2010)
https://doi.org/10.1103/PhysRevLett.105.256806
15 R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene, Science 330(6005), 812 (2010)
https://doi.org/10.1126/science.1194988
16 F. Freitag, J. Trbovic, M. Weiss, and C. Schonenberger, Spontaneously gapped ground state in suspended bilayer graphene, Phys. Rev. Lett. 108(7), 076602 (2012)
https://doi.org/10.1103/PhysRevLett.108.076602
17 L. Velasco, W. Jing, Y. Bao, P. Lee, V. Kratz, M. Aji, C. N. Bockrath, C. Lau, R. Varma, D. Stillwell, F. Smirnov, J. Zhang, J. Jung, and A. H. MacDonald, Transport spectroscopy of symmetry-broken insulating states in bilayer graphene, Nat. Nanotechnol. 7(3), 156 (2012)
https://doi.org/10.1038/nnano.2011.251
18 V. M. Nabutovskii and B. Ya. Shapiro, Superconductivity in a system of interacting localized and delocalized electrons, Zh. Eksp. Teor. Fiz. 84, 422 (1983) [Sov. Phys. JETP 57(1), 245 (1983)]
19 P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
https://doi.org/10.1103/RevModPhys.78.17
20 J. Orenstein and A. J. Millis, Advances in the physics of high-temperature superconductivity, Science 288(5465), 468 (2000)
https://doi.org/10.1126/science.288.5465.468
21 J. Singleton and C. Mielke, Quasi-two-dimensional organic superconductors: A review, Contemp. Phys. 43(2), 63 (2002)
https://doi.org/10.1080/00107510110108681
22 I. N. Khlyustikov and A. I. Buzdin, Twinning-plane superconductivity, Adv. Phys. 36(3), 271 (1987)
https://doi.org/10.1080/00018738700101012
23 X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Interaction of phonons and Dirac fermions on the surface of Bi2Se3: A strong Kohn anomaly, Phys. Rev. Lett. 107(18), 186102 (2011)
https://doi.org/10.1103/PhysRevLett.107.186102
24 C.W. Luo, H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C. M. Cheng, C. H. Chen, K. D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev, and G. D. Gu, Snapshots of Dirac fermions near the Dirac point in topological insulators, Nano Lett. 13(12), 5797 (2013)
https://doi.org/10.1021/nl4021842
25 X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamon, and M. El-Batanouny, Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements, Phys. Rev. Lett. 108(18), 185501 (2012)
https://doi.org/10.1103/PhysRevLett.108.185501
26 S. Das Sarma and Q. Z. Li, Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators, Phys. Rev. B 88, 081404(R) (2013)
27 Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electronphonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 108(18), 187001 (2012)
https://doi.org/10.1103/PhysRevLett.108.187001
28 V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron-phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B 88(7), 075432 (2013)
https://doi.org/10.1103/PhysRevB.88.075432
29 M. Cheng, R. M. Lutchyn, and S. Das Sarma, Topological protection of Majorana qubits, Phys. Rev. B 85(16), 165124 (2012)
https://doi.org/10.1103/PhysRevB.85.165124
30 D. Li, B. Rosenstein, B. Ya. Shapiro, and I. Shapiro, Quantum critical point in the superconducting transition on the surface of a topological insulator, Phys. Rev. B 90(5), 054517 (2014)
https://doi.org/10.1103/PhysRevB.90.054517
31 H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
32 J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Bulk band gap and surface state conduction observed in voltagetuned crystals of the topological insulator Bi2Se3, Phys. Rev. Lett. 106(19), 196801 (2011)
https://doi.org/10.1103/PhysRevLett.106.196801
33 D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nat. Phys. 8(6), 459 (2012)
https://doi.org/10.1038/nphys2286
34 C. K. Lu and I. F. Herbut, Pairing symmetry and vortex zero mode for superconducting Dirac fermions, Phys. Rev. B 82(14), 144505 (2010)
https://doi.org/10.1103/PhysRevB.82.144505
35 M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics, Phys. Rev. B 79(9), 094504 (2009)
https://doi.org/10.1103/PhysRevB.79.094504
36 S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9780511973765
37 I. Herbut, A Modern Approach to Critical Phenomena, Cambridge: Cambridge University Press, 2010
38 D. J. Amit, Field Theory, The Renormalization Group and Critical Phenomena, London: World Scientific, 2005
https://doi.org/10.1142/5715
39 B. Rosenstein, B. J. Warr, and S. H. Park, Four-fermion theory is renormalizable in 2+1 dimensions, Phys. Rev. Lett. 62(13), 1433 (1989)
https://doi.org/10.1103/PhysRevLett.62.1433
40 B. Rosenstein, B. J. Warr, and S. H. Park, Dynamical symmetry breaking in four-fermion interaction models, Phys. Rep. 205(2), 59 (1991)
https://doi.org/10.1016/0370-1573(91)90129-A
41 G. Gat, A. Kovner, and B. Rosenstein, Chiral phase transitions in d= 3 and renormalizability of four-Fermi interactions, Nucl. Phys. B 385(1-2), 76 (1992)
https://doi.org/10.1016/0550-3213(92)90095-S
42 B. Rosenstein, Hoi-Lai Yu, and A. Kovner, Critical exponents of new universality classes, Phys. Lett. B 314(3-4), 381 (1993)
https://doi.org/10.1016/0370-2693(93)91253-J
43 R. Schneider, A. G. Zaitsev, D. Fuchs, and H. v. L?hneysen, Superconductor–insulator quantum phase transition in disordered FeSe thin films, Phys. Rev. Lett. 108(25), 257003 (2012)
https://doi.org/10.1103/PhysRevLett.108.257003
44 V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys. 84(3), 1067 (2012)
https://doi.org/10.1103/RevModPhys.84.1067
45 H. A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev. B 40(2), 1087 (1989)
https://doi.org/10.1103/PhysRevB.40.1087
46 S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Many-body integer quantum Hall effect: Evidence for new phase transitions, Phys. Rev. Lett. 72(5), 728 (1994)
https://doi.org/10.1103/PhysRevLett.72.728
47 I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet, Phys. Rev. Lett. 84(25), 5808 (2000)
https://doi.org/10.1103/PhysRevLett.84.5808
48 I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet, Phys. Rev. Lett. 87(3), 036803 (2001)
https://doi.org/10.1103/PhysRevLett.87.036803
49 Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, and W. Wegscheider, Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers, Phys. Rev. Lett. 104(11), 116802 (2010)
https://doi.org/10.1103/PhysRevLett.104.116802
50 A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton transport and Andreev reflection in a bilayer quantum Hall system, Phys. Rev. Lett. 106(23), 236807 (2011)
https://doi.org/10.1103/PhysRevLett.106.236807
51 X. Huang, W. Dietsche, M. Hauser, and K. von Klitzing, Coupling of Josephson currents in quantum Hall bilayers, Phys. Rev. Lett. 109(15), 156802 (2012)
https://doi.org/10.1103/PhysRevLett.109.156802
52 B. Seradjeh, J. E. Moore, and M. Franz, Exciton condensation and charge fractionalization in a topological insulator film, Phys. Rev. Lett. 103(6), 066402 (2009)
https://doi.org/10.1103/PhysRevLett.103.066402
53 Z. Wang, N. Hao, Z. G. Fu, and P. Zhang, Excitonic condensation for the surface states of topological insulator bilayers, New J. Phys. 14(6), 063010 (2012)
https://doi.org/10.1088/1367-2630/14/6/063010
54 D. K. Efimkin, Yu. E. Lozovik, and A. A. Sokolik, Electron– hole pairing in a topological insulator thin film, Phys. Rev. B 86(11), 115436 (2012)
https://doi.org/10.1103/PhysRevB.86.115436
55 S. Rist, A. A. Varlamov, A. H. MacDonald, R. Fazio, and M. Polini, Photoemission spectra of massless Dirac fermions on the verge of exciton condensation, Phys. Rev. B 87(7), 075418 (2013)
https://doi.org/10.1103/PhysRevB.87.075418
56 D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)
https://doi.org/10.1007/s11467-011-0223-y
57 L. Fu and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett. 105(9), 097001 (2010)
https://doi.org/10.1103/PhysRevLett.105.097001
58 B. Rosenstein, B. Ya. Shapiro, D. Li, and I. Shapiro, Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction, J. Phys.: Condens. Matter 27(2), 025701 (2015)
https://doi.org/10.1088/0953-8984/27/2/025701
59 A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, New York: Pergamon Press, 1965
60 E. M. Lifshits and L. P. Pitaeskii, Course of Theoretical Physics (Vol. 9): Statistical Physics, Part 2, Oxford: Prgamon Press, 1980
61 J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10(8), 2428 (1974)
https://doi.org/10.1103/PhysRevD.10.2428
62 R. Haussmann, Self-Consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems, Springer, 1999
63 Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
64 P. Hosur, X. Dai, Z. Fang, and X. L. Qi, Time-reversalinvariant topological superconductivity in doped Weyl semimetals, Phys. Rev. B 90(4), 045130 (2014)
https://doi.org/10.1103/PhysRevB.90.045130
65 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Ac conductivity of graphene: From tight-binding model to 2+1- dimensional quantum electrodynamics, Int. J. Mod. Phys. B 21(27), 4611 (2007)
https://doi.org/10.1142/S0217979207038022
66 A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5(6), 1174 (1957)]
67 J. D. Ketterson and S. N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9781139171090
68 B. Rosenstein and D. Li, Ginzburg–Landau theory of type II superconductors in magnetic field, Rev. Mod. Phys. 82(1), 109 (2010)
https://doi.org/10.1103/RevModPhys.82.109
69 I. F. Herbut, V. Juricic, and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B 80(7), 075432 (2009)
https://doi.org/10.1103/PhysRevB.80.075432
70 L. Janssen and I. F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach, Phys. Rev. B 89(20), 205403 (2014)
https://doi.org/10.1103/PhysRevB.89.205403
71 L. Del Debbio, S. J. Hands, and J. C. Mehegan, Threedimensional thirring model for small Nf, Nucl. Phys. B 502(1-2), 269 (1997)
https://doi.org/10.1016/S0550-3213(97)00435-5
72 I. M. Barbour, N. Psycharis, E. Focht, W. Franzki, and J. Jersak, Strongly coupled lattice gauge theory with dynamical fermion mass generation in three dimensions, Phys. Rev. D 58(7), 074507 (1998)
https://doi.org/10.1103/PhysRevD.58.074507
73 S. Chandrasekharan and A. Li, Fermion bag solutions to some sign problems in four-fermion field theories, Phys. Rev. D 85(9), 091502 (2012)
https://doi.org/10.1103/PhysRevD.85.091502
74 S. Chandrasekharan, Solutions to sign problems in lattice Yukawa models, Phys. Rev. D 86(2), 021701 (2012)
https://doi.org/10.1103/PhysRevD.86.021701
75 S. Chandrasekharan and Anyi Li, Quantum critical behavior in three dimensional lattice Gross–Neveu models, Phys. Rev. D 88, 021701(R) (2013)
76 F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X 3, 031010 (2013)
https://doi.org/10.1103/PhysRevX.3.031010
77 S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Scientific Reports 2, 992 (2012)
https://doi.org/10.1038/srep00992
78 B. W. Lee, Chiral Dynamics, New York: Gordon and Breach, 1972
79 Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electron– phonon coupling on the surface of the topological insula-tor Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 108(18), 187001 (2012)
https://doi.org/10.1103/PhysRevLett.108.187001
80 V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron–phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B 88(7), 075432 (2013)
https://doi.org/10.1103/PhysRevB.88.075432
81 Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator, Phys. Rev. Lett. 104(5), 057001 (2010)
https://doi.org/10.1103/PhysRevLett.104.057001
82 L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of topological order in a superconducting doped topological insulator, Nat. Phys. 6(11), 855 (2010)
https://doi.org/10.1038/nphys1762
83 G. Koren, T. Kirzhner, E. Lahoud, K. Chashka, and A. Kanigel, Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions, Phys. Rev. B 84(22), 224521 (2011)
https://doi.org/10.1103/PhysRevB.84.224521
84 P. H. Le, W.-Y. Tzeng, H.-J. Chen, C. W. Luo, J.- Y. Lin, and J. Leu, Superconductivity in textured Bi clusters/Bi2Te3 films, APL Mat. 2, 096105 (2014)
https://doi.org/10.1063/1.4894779
85 K. Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione, Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3, Phys. Rev. Lett. 111(8), 087001 (2013)
https://doi.org/10.1103/PhysRevLett.111.087001
86 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
87 S. Y. Xu, C. Liu, S. K. Kushwaha, T. R. Chang, J. W. Krizan, R. Sankar, C. M. Polley, J. Adell, T. Balasubramanian, K. Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. C. Chou, T. Okuda, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi, arXiv: 1312.7624 (2013)
88 M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and M. Potemski, Observation of three-dimensional massless Kane fermions in a zinc-blende crystal, Nat. Phys. 10(3), 233 (2014)
https://doi.org/10.1038/nphys2857
89 G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)
https://doi.org/10.1103/PhysRevLett.107.186806
90 Z. J. Wang, H. M. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
91 M. Neupane, S. Y. Xu, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan, Observation of quantumtunneling modulated spin texture in ultrathin topological insulator Bi2Se3 films, Nat. Commun. 05, 3786 (2014), arXiv: 1404.2830v1
https://doi.org/10.1038/ncomms4841
92 Y. Fuseya, M. Ogata, and H. Fukuyama, Interband contributions from the magnetic field on Hall effects for Dirac electrons in bismuth, Phys. Rev. Lett. 102(6), 066601 (2009)
https://doi.org/10.1103/PhysRevLett.102.066601
93 P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge transport in Weyl semimetals, Phys. Rev. Lett. 108(4), 046602 (2012)
https://doi.org/10.1103/PhysRevLett.108.046602
94 T. Kariyado and M. Ogata, Three-dimensional Dirac electrons at the Fermi energy in cubic inverse perovskites: Ca3PbO and its family, J. Phys. Soc. Jpn. 80(8), 083704 (2011)
https://doi.org/10.1143/JPSJ.80.083704
95 T. Kariyado and M. Ogata, Low-energy effective hamiltonian and the surface states of Ca3PbO, J. Phys. Soc. Jpn. 81(6), 064701 (2012)
https://doi.org/10.1143/JPSJ.81.064701
96 P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL (Europhysics Letters) 97(6), 67004 (2012)
https://doi.org/10.1209/0295-5075/97/67004
97 B. Rosenstein and M. Lewkowicz, Dynamics of electric transport in interacting Weyl semimetals, Phys. Rev. B 88(4), 045108 (2013)
https://doi.org/10.1103/PhysRevB.88.045108
98 M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Noncentrosymmetric superconductor with a bulk threedimensional Dirac cone gapped by strong spin–orbit coupling, Phys. Rev. B 89(2), 020505 (2014) (R)
https://doi.org/10.1103/PhysRevB.89.020505
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed