Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 107403   https://doi.org/10.1007/s11467-015-0495-8
  RESEARCH ARTICLE 本期目录
Electronic and magnetic structures of ternary iron telluride KFe2Te2
Xu-Guang Xu,Wei Li()
State Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
 全文: PDF(476 KB)  
Abstract

We examine the electronic and magnetic structures of iron telluride KFe2Te2 using first-principle calculations. We demonstrate that the ground state of this compound is in bicollinear antiferromagnetic order with Fe local moments (~ 2.6 μB) that are ferromagnetically aligned along a diagonal direction and antiferromagnetically aligned along the other diagonal in the Fe-Fe square lattice, similar to the alignment discovered in the parent compound of superconductor α-FeTe. This bicollinear antiferromagnetic order results from the interplay among the nearest, next-nearest, and next-nextnearest neighbor exchange interactions, which are mediated by Te 5p orbitals. This finding may aid our understanding of the interplay between magnetism and superconductivity in the family of iron-based materials.

Key wordsiron-basel materials    electronic and magnetic structures
收稿日期: 2015-05-15      出版日期: 2015-08-17
Corresponding Author(s): Wei Li   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 107403.
Xu-Guang Xu, Wei Li. Electronic and magnetic structures of ternary iron telluride KFe2Te2. Front. Phys. , 2015, 10(4): 107403.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0495-8
https://academic.hep.com.cn/fop/CN/Y2015/V10/I4/107403
1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
2 M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. P?ttgen, Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B 78(2), 020503 (2008)
https://doi.org/10.1103/PhysRevB.78.020503
3 F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Superconductivity in the PbO-type structure a-FeSe, Proc. Natl. Acad. Sci. USA 105(38), 14262 (2008)
https://doi.org/10.1073/pnas.0807325105
4 J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B 82, 180520(R) (2010)
5 C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. Ii, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature 453(7197), 899 (2008)
https://doi.org/10.1038/nature07057
6 J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Competing orders and spin-density-wave instability in La(O1-xFx)FeAs, Europhys. Lett. 83(2), 27006 (2008)
https://doi.org/10.1209/0295-5075/83/27006
7 F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102(17), 177003 (2009)
https://doi.org/10.1103/PhysRevLett.102.177003
8 S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, First-order magnetic and structural phase transitions in Fe1+ySexTe1-x, Phys. Rev. B 79(5), 054503 (2009)
https://doi.org/10.1103/PhysRevB.79.054503
9 W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te,Se) superconductors, Phys. Rev. Lett. 102(24), 247001 (2009)
https://doi.org/10.1103/PhysRevLett.102.247001
10 W. Bao, Q. Z. Huang, G. F. Chen, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor, Chin. Phys. Lett. 28(8), 086104 (2011)
https://doi.org/10.1088/0256-307X/28/8/086104
11 C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett. 107(5), 056401 (2011)
https://doi.org/10.1103/PhysRevLett.107.056401
12 X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B 83(23), 233205 (2011)
https://doi.org/10.1103/PhysRevB.83.233205
13 W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkali-doped iron selenides R1-xFe2-ySe2, Phys. Rev. B 85, 100407(R) (2012)
14 C. H. Li, B. Shen, F. Han, X. Zhu, and H. H. Wen, Transport properties and anisotropy of Rb1-xFe2-ySe2 single crystals, Phys. Rev. B 83(18), 184521 (2011)
https://doi.org/10.1103/PhysRevB.83.184521
15 Y. J. Yan, M. Zhang, A. F. Wang, J. J. Ying, Z. Y. Li, W. Qin, X. G. Luo, J. Q. Li, J. Hu, and X. H. Chen, Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors, Sci. Rep. 2, 212 (2012)
https://doi.org/10.1038/srep00212
16 F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, J. Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, M. H. Jiang, J. P. Hu, and D. L. Feng, Electronic identification of the parental phases and mesoscopic phase separation of KxFe2-ySe2 superconductors, Phys. Rev. X 1(2), 021020 (2011)
https://doi.org/10.1103/PhysRevX.1.021020
17 P. Cai, C. Ye, W. Ruan, X. Zhou, A. Wang, M. Zhang, X. Chen, and Y. Wang, Imaging the coexistence of a superconducting phase and a charge-density modulation in the K0.73Fe1.67Se2 superconductor using a scanning tunneling microscope, Phys. Rev. B 85(9), 094512 (2012)
https://doi.org/10.1103/PhysRevB.85.094512
18 W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Phase separation and magnetic order in K-doped iron selenide superconductor, Nat. Phys. 8(2), 126 (2011)
https://doi.org/10.1038/nphys2155
19 R. H. Yuan, T. Dong, Y. J. Song, P. Zheng, G. F. Chen, J. P. Hu, J. Q. Li, and N. L. Wang, Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2, Sci. Rep. 2, 221 (2012)
https://doi.org/10.1038/srep00221
20 A. Zhang, T. Xia, K. Liu, W. Tong, Z. R. Yang, and Q. M. Zhang, Superconductivity at 44 K in K intercalated FeSe system with excess Fe, Sci. Rep. 3, 1216 (2013)
https://doi.org/10.1038/srep01216
21 W. Bao, G. N. Li, Q. Huang, G. F. Chen, J. B. He, M. A. Green, Y. Qiu, D. M. Wang, and J. L. Luo, Superconductiv-ity tuned by the iron vacancy order in KxFe2-ySe2, Chin. Phys. Lett. 30(2), 027402 (2013)
https://doi.org/10.1088/0256-307X/30/2/027402
22 Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B 83(14), 140505 (2011)
https://doi.org/10.1103/PhysRevB.83.140505
23 D. X. Mou, L. Zhao, and X. J. Zhou, Structural, magnetic and electronic properties of the ironCchalcogenide AxFe2-ySe2 (A= K, Cs, Rb, and Tl, etc.), Front. Phys. 6(4), 410 (2011)
https://doi.org/10.1007/s11467-011-0229-5
24 D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Zhao, L. Yu, G. Liu, S. He, X. Dong, J. Zhang, H. Wang, C. Dong, M. Fang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, Z. Xu, C. Chen, and X. J. Zhou, Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor, Phys. Rev. Lett. 106(10), 107001 (2011)
https://doi.org/10.1103/PhysRevLett.106.107001
25 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett. 101(5), 057003 (2008)
https://doi.org/10.1103/PhysRevLett.101.057003
26 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx, Phys. Rev. Lett. 101(8), 087004 (2008)
https://doi.org/10.1103/PhysRevLett.101.087004
27 W. Li, J. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Pairing symmetry in the iron-pnictide superconductor KFe2As2, Europhys. Lett. 99(5), 57006 (2012)
https://doi.org/10.1209/0295-5075/99/57006
28 I. R. Shein and A. L. Ivanovskii, Structural, electronic properties and Fermi surface of ThCr2Si2-type tetragonal KFe2S2, KFe2 Se2, and KFe2 Te2 phases as parent systems of new ternary iron-chalcogenide superconductors, arXiv: 1102.4173 (2011)
29 X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A= Cs, Rb, K, or Tl), Phys. Rev. B 84(5), 054502 (2011)
https://doi.org/10.1103/PhysRevB.84.054502
30 P. E. Bl?chl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
31 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
32 J. P. Perdew, K. Burke, and M. Erznerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
33 C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett. 28(5), 057402 (2011)
https://doi.org/10.1088/0256-307X/28/5/057402
34 D. J. Singh, Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations, Phys. Rev. B 78(9), 094511 (2008)
https://doi.org/10.1103/PhysRevB.78.094511
35 W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Firstprinciples calculations of the electronic structure of ironpnictide EuFe2(As,P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
https://doi.org/10.1103/PhysRevB.86.155119
36 N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)
https://doi.org/10.1103/PhysRevB.56.12847
37 A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
https://doi.org/10.1016/j.cpc.2007.11.016
38 W. Li, C. Setty, X. H. Chen, and J. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
https://doi.org/10.1007/s11467-014-0428-y
39 F. Ma, Z. Y. Lu, and T. Xiang, Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Phys. Rev. B 78(22), 224517 (2008)
https://doi.org/10.1103/PhysRevB.78.224517
40 Y. Liang, X. Wu, W. F. Tsai, and J. P. Hu, Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation, Front. Phys. 9(2), 194 (2014)
https://doi.org/10.1007/s11467-013-0407-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed