Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (3): 115201   https://doi.org/10.1007/s11467-015-0545-2
  本期目录
Potential distribution around a test charge in a positive dust-electron plasma
S. Ali()
National Centre for Physics (NCP) at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000, Pakistan
 全文: PDF(300 KB)  
Abstract

The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the dust-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov–Poisson equations coupled with the dust charging equation is solved by using the space–time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Debye–Hückel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in twocomponent plasmas, where positively charged dust grains are present.

Key wordsdusty plasmas, dust charge fluctuations, positively charged dusty plasma, shielding and dynamical potentials
收稿日期: 2015-07-26      出版日期: 2016-06-08
Corresponding Author(s): S. Ali   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(3): 115201.
S. Ali. Potential distribution around a test charge in a positive dust-electron plasma. Front. Phys. , 2016, 11(3): 115201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0545-2
https://academic.hep.com.cn/fop/CN/Y2016/V11/I3/115201
1 T. Peter, Linearized potential of an ion moving through plasma, J. Plasma Phys. 44(02), 269 (1990)
https://doi.org/10.1017/S0022377800015178
2 T. Peter and J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma (I): Linear and nonlinear Vlasov theory for the stopping power, Phys. Rev. A 43(4), 1998 (1991)
https://doi.org/10.1103/PhysRevA.43.1998
3 J. Neufeld and R. H. Ritchie, Passage of charged particles through plasma, Phys. Rev. 98(6), 1632 (1955)
https://doi.org/10.1103/PhysRev.98.1632
4 J. R. Sanmartin and S. H. Lam, Far-Wake structure in Rarefield plasma flows past charged bodies, Phys. Fluids14(1), 62 (1971)
https://doi.org/10.1063/1.1693289
5 L. Chen, A. B. Langdon, and M. A. Lieberman, Shielding of moving test particles in warm, isotropic plasma, J. Plasma Phys. 9(03), 311 (1973)
https://doi.org/10.1017/S0022377800007522
6 M. Nambu, S. V. Vladimirov, and P. K. Shukla, Attractive forces between charged particulates in plasmas, Phys. Lett. A 203(1), 40 (1995)
https://doi.org/10.1016/0375-9601(95)00380-L
7 S. V. Vladimirov and M. Nambu, Attraction of charged particulates in plasmas with finite flows, Phys. Rev. E 52(3), R2172 (1995)
https://doi.org/10.1103/PhysRevE.52.R2172
8 M. Salimullah and M. Nambu, Crystallization in a magnetized and inhomogeneous dusty plasma with streaming ions, J. Phys. Soc. Jpn. 69(6), 1688 (2000)
https://doi.org/10.1143/JPSJ.69.1688
9 M. Nambu, B. J. Saikia, and T. Hada, Wake potential around a test dust particulate in a magnetized plasma with streaming ions, J. Phys. Soc. Jpn. 70(5), 1175 (2001)
https://doi.org/10.1143/JPSJ.70.1175
10 M. Nambu, three-dimensional wake potential due to ion cyclotron waves in a flowing magnetized plasma, Phys. Scr. T98, 130 (2002)
11 M. H. Nasim, Energy loss of charged projectiles in a dusty plasma, Ph.D. thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1999
12 H. Ikezi, Coulomb solid of small particles in plasmas, Phys. Fluids 29(6), 1764 (1986)
https://doi.org/10.1063/1.865653
13 J. H. Chu and I. Lin, Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas, Phys. Lett. A 72(25), 4009 (1994)
https://doi.org/10.1103/PhysRevLett.72.4009
14 J. H. Chu, J. B. Du, and I. Lin, Coulomb solids and low-frequency fluctuations in RF dusty plasmas, J. Phys. D 27(2), 296 (1994)
https://doi.org/10.1088/0022-3727/27/2/018
15 H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Plasma crystal: Coulomb crystallization in a dusty plasma, Phys. Rev. Lett. 73(5), 652 (1994)
https://doi.org/10.1103/PhysRevLett.73.652
16 Y. Hayashi and K. Tachibana, Observation of coulomb-crystal formation from carbon particles grown in a Methane plasma, Jpn. J. Appl. Phys. 33, L804 (1994)
https://doi.org/10.1143/JJAP.33.L804
17 A. Melzer, T. Trottenberg, and A. Piel, Experimental determination of the charge on dust particles forming Coulomb lattices, Phys. Lett. A 191(3-4), 301 (1994)
https://doi.org/10.1016/0375-9601(94)90144-9
18 M. Nambu and H. Akama, Attractive potential between resonant electrons, Phys. Fluids 28(7), 2300 (1985)
https://doi.org/10.1063/1.865284
19 N. N. Rao and P. K. Shukla, Nonlinear dust-acoustic waves with dust charge fluctuations, Planet. Space Sci. 42(3), 221 (1994)
https://doi.org/10.1016/0032-0633(94)90084-1
20 J. X. Ma and P. K. Shukla, Compact dispersion relation for parametric instabilities of electromagnetic waves in dusty plasmas, Phys. Plasmas 1(5), 1506 (1995)
https://doi.org/10.1063/1.871366
21 R. K. Varma, P. K. Shukla, and V. Krishan, Electrostatic oscillations in the presence of grain-charge perturbations in dusty plasmas, Phys. Rev. E 47(5), 3612 (1993)
https://doi.org/10.1103/PhysRevE.47.3612
22 P. K. Shukla, in: The Physics of Dusty Plasmas, edited by P. K. Shukla, D. A. Mendis, and V. W. Chow, Singapore: World Scientific, 1996
23 F. Melandsc, T. Aslaksen, and O. Havnes, A new damping effect for the dust-acoustic wave, Planet. Space Sci. 41(4), 321 (1993)
https://doi.org/10.1016/0032-0633(93)90027-Y
24 M. H. Nasim, P. K. Shukla, and G. Murtaza, Effect of dust charge fluctuations on energy loss of a test dust charged particulate in a dusty plasma, Phys. Plasmas 6(5), 1409 (1999)
https://doi.org/10.1063/1.873390
25 M. H. Nasim, A. M. Mirza, G. Murtaza, and P. K. Shukla, Energy loss of a test charge in dusty plasmas: collective and individual particle contributions, Phys. Scr. 59(5), 379 (1999)
https://doi.org/10.1238/Physica.Regular.059a00379
26 S. Ali, M. H. Nasim, and G. Murtaza, Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma, Phys. Plasmas 10(11), 4207 (2003)
https://doi.org/10.1063/1.1619976
27 M. Horanyi, G. E. Morfill, and E. Griin, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere, Nature 363(6425), 144 (1993)
https://doi.org/10.1038/363144a0
28 O. Havnes, J. Trøim, T. Blix, W. Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res. 101(A5), 10839 (1996)
https://doi.org/10.1029/96JA00003
29 V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V. Chernyschev, Particle ordered structures in a strongly coupled classical thermal plasma, Phys. Rev. E 54(3), R2236 (1996)
https://doi.org/10.1103/PhysRevE.54.R2236
30 A. A. Samarian, O. S. Vaulina, A. P. Nefedov, V. E. Fortov, B. W. James, and O. F. Petrov, Positively charged particles in dusty plasmas, Phys. Rev. E 64, 056407 (2001)
https://doi.org/10.1103/PhysRevE.64.056407
31 M. Rosenberg and D. A. Mendis, UV-induced Coulomb crystallization in a dusty gas, IEEE Trans. Plasma Sci. 23(2), 177 (1995)
https://doi.org/10.1109/27.376584
32 P. K. Shukla and D. Resendes, Dust acoustic waves with dust charge fluctuations — revisited, Phys. Plasmas 7(5), 1614 (2000)
https://doi.org/10.1063/1.873983
33 P. K. Shukla, Dust acoustic wave in a thermal dusty plasma, Phys. Rev. E 61, 7249 (2000)
https://doi.org/10.1103/PhysRevE.61.7249
34 S. Ghosh, Dust acoustic shock waves in two-component dusty plasma, New J. Phys. 5, 142 (2003)
https://doi.org/10.1088/1367-2630/5/1/142
35 M. Horanyi, B. Walch, S. Robertson, and D. Alexander, Electrostatic charging properties of Apollo 17 lunar dust, J. Geophys. Res. 103(E4), 8575 (1998)
https://doi.org/10.1029/98JE00486
36 C. K. Goertz, Dusty plasmas in the solar system, Rev. Geophys. 27(2), 271 (1989)
https://doi.org/10.1029/RG027i002p00271
37 G. L. Delzanno, G. Lapenta, and M. Rosenberg, Attractive potential around a thermionically emitting microparticle, Phys. Rev. Lett. 92(3), 350021 (2004)
https://doi.org/10.1103/PhysRevLett.92.035002
38 S. K. Paul, IJCIT 2, 25 (2012)
39 P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, U.K.: Institute of Physics Publishing Ltd., 2002
https://doi.org/10.1887/075030653X
40 M. Sodha and S. Guha, Physics of Colloidal Plasmas, Adv. Plasma Phys. 4, 219 (1971)
41 M. Rosenberg, D. A. Mendis, and D. Sheenan, UV-induced Coulomb crystallization of dust grains in high-pressure gas, IEEE Trans. Plasma Sci. 24(6), 1422 (1996)
https://doi.org/10.1109/27.553210
42 S. A. Khrapak, A. P. Nefedov, O. F. Petrov, and O. S. Vaulina, Dynamical properties of random charge fluctuations in a dusty plasma with different charging mechanisms, Phys. Rev. E 59, 6017 (1999)
https://doi.org/10.1103/PhysRevE.59.6017
43 D. B. Fried and S. D. Conte, The Plasma Dispersion Function, New York: Academic Press, 1961
44 N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, New York: McGraw-Hill, 1973
45 X. G. Wang and Q. B. Luan, Low frequency Whistler waves excited in fast magnetic reconnection processes, Front. Phys. 8(5), 585 (2013)
https://doi.org/10.1007/s11467-013-0369-x
46 Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)
https://doi.org/10.1007/s11467-013-0406-9
47 D. Montgomery, G. Joyce, and R. Sugihara, Inverse third power law for the shielding of test particles, Plasma Phys. 10(7), 681 (1968)
https://doi.org/10.1088/0032-1028/10/7/304
48 S. A. Khrapak and G. Morfill, Waves in two component electron-dust plasma, Phys. Plasmas 8(6), 2629 (2001)
https://doi.org/10.1063/1.1370061
49 P. Debye and E. Hückel, The theory of electrolytes (I): Lowering of freezing point and related phenomena, Phys. Z. 24, 185 (1923)
50 M. Rosenberg and P. K. Shukla, On beam-plasma interaction in a dust-electron plasma, IEEE Trans. Plasma Sci. 29(2), 202 (2001)
https://doi.org/10.1109/27.923694
51 P. K. Shukla and N. N. Rao, Coulomb crystallization in colloidal plasmas with streaming ions and dust grains, Phys. Plasmas 3(5), 1770 (1996)
https://doi.org/10.1063/1.871695
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed