Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114214   https://doi.org/10.1007/s11467-016-0606-1
  本期目录
Review of LIBS application in nuclear fusion technology
Cong Li (李聪)1,Chun-Lei Feng (冯春雷)1,Hassan Yousefi Oderji1,Guang-Nan Luo (罗广南)2,Hong-Bin Ding (丁洪斌)1()
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024, China
2. Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei 230031, China
 全文: PDF(17033 KB)  
Abstract

Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma–wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

Key wordsLIBS    nuclear fusion    plasma-facing components
收稿日期: 2016-01-01      出版日期: 2016-10-17
Corresponding Author(s): Hong-Bin Ding (丁洪斌)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114214.
Cong Li (李聪),Chun-Lei Feng (冯春雷),Hassan Yousefi Oderji,Guang-Nan Luo (罗广南),Hong-Bin Ding (丁洪斌). Review of LIBS application in nuclear fusion technology. Front. Phys. , 2016, 11(6): 114214.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0606-1
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114214
1 V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices, Nucl. Fusion 53(9), 093002 (2013)
https://doi.org/10.1088/0029-5515/53/9/093002
2 G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41(12), 1967 (2001)
https://doi.org/10.1088/0029-5515/41/12/218
3 G. Federici, P. Andrew, P. Barabaschi, J. Brooks, R. Doerner, A. Geier, A. Herrmann, G. Janeschitz, K. Krieger, A. Kukushkin, A. Loarte, R. Neu, G. Saibene, M. Shimada, G. Strohmayer, and M. Sugihara, Key ITER plasma edge and plasma–material interaction issues, J. Nucl. Mater.313–316, 11 (2003)
https://doi.org/10.1016/S0022-3115(02)01327-2
4 M. Rubel, P. Wienhold, and D. Hildebrandt, Fuel accumulation in co-deposited layers on plasma facing components,J. Nucl. Mater. 290–293, 473 (2001)
https://doi.org/10.1016/S0022-3115(00)00583-3
5 K. Sugiyama, T. Hayashi, K. Krieger, M. Mayer, K. Masaki, N. Miya, and T. Tanabe, Ion beam analysis of H and D retention in the near surface layers of JT-60U plasma facing wall tiles, J. Nucl. Mater. 363–365, 949 (2007)
https://doi.org/10.1016/j.jnucmat.2007.01.119
6 M. Mayer, V. Rohde, J. Likonen, E. Vainonen-Ahlgren, K. Krieger, X. Gong, and J. Chen, Carbon erosion and deposition on the ASDEX Upgrade divertor tiles, J. Nucl. Mater. 337–339, 119 (2005)
https://doi.org/10.1016/j.jnucmat.2004.10.046
7 A. Yoshikawa, Y. Hirohata, Y. Oya, T. Shibahara, M. Oyaidzu, T. Arai, Y. Gotoh, K. Masaki, N. Miya, K. Okuno, and T. Tanabe, Hydrogen retention and depth profile in divertor tiles of Jt-60 exposed to hydrogen discharges, Fusion Eng. Des. 81(1–7), 289 (2006)
8 T. Shibahara, T. Tanabe, Y. Hirohata, Y. Oya, M. Oyaidzu, A. Yoshikawa, Y. Onishi, T. Arai, K. Masaki, K. Okuno, and N. Miya, Hydrogen retention of JT-60 open divertor tiles exposed to HH discharges, Nucl. Fusion 46(10), 841 (2006)
https://doi.org/10.1088/0029-5515/46/10/001
9 K. Katayama, T. Takeishi, Y. Manabe, H. Nagase, M. Nishikawa, and N. Miya, Tritium release behavior from the graphite tiles used at the dome unit of the W-shaped divertor region in JT-60U,J. Nucl. Mater. 340(1), 83 (2005)
https://doi.org/10.1016/j.jnucmat.2004.11.005
10 T. Hino, K. Iwamoto, Y. Hirohata, T. Yamashina, A. Sagara, N. Noda, N. Inoue, Y. Kubota, N. Natsir, O. Motojima, T. Matsuda, T. Sogabe, K. Kuroda, and M. Yabe, Properties of boron coatings used as plasma facing material of fusion device, Thin Solid Films 253(1–2), 518 (1994)
https://doi.org/10.1016/0040-6090(94)90377-8
11 E. Taglauer and G. Staudenmaier, Surface analysis in fusion devices, J. Vac. Sci. Technol. A 5(4), 1352 (1987)
https://doi.org/10.1116/1.574768
12 J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd Ed., New York: Springer, 2003
https://doi.org/10.1007/978-1-4615-0215-9
13 D. G. Whyte, J. P. Coad, P. Franzen, and H. Maier, Similarities in divertor erosion/redeposition and deuterium retention patterns between the tokamaks ASDEX Upgrade, DIII-D and JET, Nucl. Fusion 39(8), 1025 (1999)
https://doi.org/10.1088/0029-5515/39/8/306
14 Y. Oya, Y. Hirohata, Y. Morimoto, H. Yoshida, H. Kodama, K. Kizu, J. Yagyu, Y. Gotoh, K. Masaki, K. Okuno, T. Tanabe, N. Miya, T. Hino, and S. Tanaka, Hydrogen isotope behavior in in-vessel components used for DD plasma operation of JT-60U by SIMS and XPS technique, J. Nucl. Mater.313–316, 209 (2003)
https://doi.org/10.1016/S0022-3115(02)01451-4
15 D. L. Rudakov, C. P. C. Wong, A. Litnovsky, W. R. Wampler, J. A. Boedo, N. H. Brooks, M. E. Fenstermacher, M. Groth, E. M. Hollmann, W. Jacob, S. I. Krasheninnikov, K. Krieger, C. J. Lasnier, A. W. Leonard, A. G. McLean, M. Marot, R. A. Moyer, T. W. Petrie, V. Philipps, R. D. Smirnov, P. C. Stangeby, J. G. Watkins, W. P. West, and J. H. Yu, Overview of the recent DiMES and MiMES experiments in DIII-D, Phys. Scr. T138, 014007 (2009)
https://doi.org/10.1088/0031-8949/2009/T138/014007
16 A. Huber, B. Schweer, V. Philipps, N. Gierse, M. Zlobinski, S. Brezinsek, W. Biel, V. Kotov, R. Leyte-Gonzales, Ph. Mertens, and U. Samm, Development of laser-based diagnostics for surface characterisation of wall components in fusion devices, Fusion Eng. Des. 86(6–8), 1336 (2011)
https://doi.org/10.1016/j.fusengdes.2011.01.090
17 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
18 N. Farid, C. Li, H. Wang, and H. Ding, Laser-induced breakdown spectroscopic characterization of tungsten plasma using the first, second, and third harmonics of an Nd:YAG laser, J. Nucl. Mater. 433(1–3), 80 (2013)
https://doi.org/10.1016/j.jnucmat.2012.09.002
19 N. Farid, H. Wang, C. Li, X. Wu, H. Y. Oderji, H. Ding, and G. N. Luo, Effect of background gases at reduced pressures on the laser treated surface morphology, spectral emission and characteristics parameters of laser produced Mo plasmas, J. Nucl. Mater. 438(1–3), 183 (2013)
https://doi.org/10.1016/j.jnucmat.2013.03.022
20 R. Hai, P. Liu, D. Wu, Q. Xiao, L. Sun, and H. Ding, Effect of steady magnetic field on laser-induced breakdown spectroscopic characterization of EAST-like wall materials, J. Nucl. Mater. 463, 927 (2015)
https://doi.org/10.1016/j.jnucmat.2014.10.069
21 P. Liu, R. Hai, D. Wu, Q. Xiao, L. Sun, and H. Ding, The enhanced effect of optical emission from laser induced breakdown spectroscopy of an Al-Li alloy in the presence of magnetic field confinement, Plasma Sci. Technol. 17(8), 687 (2015)
https://doi.org/10.1088/1009-0630/17/8/13
22 R. Hai, P. Liu, D. Wu, H. Ding, J. Wu, and G. N. Luo, Collinear double-pulse laser-induced breakdown spectroscopy as an in-situ diagnostic tool for wall composition in fusion devices, Fusion Eng. Des. 89(9–10), 2435 (2014)
https://doi.org/10.1016/j.fusengdes.2014.04.065
23 R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2014)
https://doi.org/10.1016/j.jnucmat.2013.12.019
24 D. Zhao, N. Farid, R. Hai, D. Wu, and H. Ding, Diagnostics of first wall materials in a magnetically confined fusion device by polarization-resolved laser-induced breakdown spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
https://doi.org/10.1088/1009-0630/16/2/11
25 C. Li, D. Zhao, X. Wu, and H. Ding, Spatial resolution measurements of C, Si and Mo using LIBS for diagnostics of plasma facing materials in a fusion device, Plasma Sci. Technol. 17(8), 638 (2015)
https://doi.org/10.1088/1009-0630/17/8/05
26 C. Li, D. Zhao, Z. Hu, X. Wu, G. N. Luo, J. Hu, and H. Ding, Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy, J. Nucl. Mater. 463, 915 (2015)
https://doi.org/10.1016/j.jnucmat.2014.12.064
27 R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak, Spectrochim. Acta B 87, 147 (2013)
https://doi.org/10.1016/j.sab.2013.05.010
28 R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater. 438, S1168 (2013)
https://doi.org/10.1016/j.jnucmat.2013.01.258
29 L. Mercadier, J. Hermann, C. Grisolia, and A. Semerok, Plume segregation observed in hydrogen and deuterium containing plasmas produced by laser ablation of carbon fiber tiles from a fusion reactor, Spectrochim. Acta B 65(8), 715 (2010)
https://doi.org/10.1016/j.sab.2010.04.011
30 L. Mercadier, J. Hermann, C. Grisolia, and A. Semerok, Analysis of deposited layers on plasma facing components by laser-induced breakdown spectroscopy: Towards ITER tritium inventory diagnostics, J. Nucl. Mater. 415(1), S1187 (2011)
https://doi.org/10.1016/j.jnucmat.2010.10.079
31 A. Semerok and C. Grisolia, LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography, Nucl. Instrum. Methods Phys. Res. A 720, 31 (2013)
https://doi.org/10.1016/j.nima.2012.12.042
32 S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy, Chem. Phys. 398, 228 (2012)
https://doi.org/10.1016/j.chemphys.2011.07.012
33 S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITERlike plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)
https://doi.org/10.1016/j.jnucmat.2011.11.050
34 R. Fantoni, S. Almaviva, L. Caneve, F. Colao, A. M. Popov, and G. Maddaluno, Development of Calibration-Free Laser-Induced-Breakdown- Spectroscopy based techniques for deposited layers diagnostics on ITER-like tiles, Spectrochim. Acta B 87, 153 (2013)
https://doi.org/10.1016/j.sab.2013.05.032
35 A. Huber, B. Schweer, V. Philipps, R. Leyte-Gonzales, N. Gierse, M. Zlobinski, S. Brezinsek, V. Kotov, P. Mertens, U. Samm, and G. Sergienko, Study of the feasibility of applying laser-induced breakdown spectroscopy for in-situ characterization of deposited layers in fusion devices, Phys. Scr. T145, 014028 (2011)
https://doi.org/10.1088/0031-8949/2011/T145/014028
36 N. Gierse, B. Schweer, A. Huber, O. Karger, V. Philipps, U. Samm, and G. Sergienko, In situ characterisation of hydrocarbon layers in TEXTOR by laser induced ablation and laser induced breakdown spectroscopy, J. Nucl. Mater. 415(1), S1195 (2011)
https://doi.org/10.1016/j.jnucmat.2010.11.055
37 J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, M. Laan, and P. Paris, Applicability of LIBS for in situ monitoring of deposition and retention on the ITERlike wall of JET – Comparison to SIMS, J. Nucl. Mater. 463, 931 (2015)
https://doi.org/10.1016/j.jnucmat.2014.10.028
38 J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, P. Paris, M. Laan, K. Piip, C. Porosnicu, C. P. Lungu, and K. Sugiyama, Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER, Phys. Scr. T159, 014067 (2014)
https://doi.org/10.1088/0031-8949/2014/T159/014067
39 H. Y. Oderji, N. Farid, L. Sun, C. Fu, and H. Ding, Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions, Spectrochim. Acta B 122, 1 (2016)
https://doi.org/10.1016/j.sab.2016.05.008
40 J. Rapp, W. R. Koppers, H. J. N. van Eck, G. J. van Rooij, W. J. Goedheer, B. de Groot, R. Al, M. F. Graswinckel, M. A. van den Berg, O. Kruyt, P. Smeets, H. J. van der Meiden, W. Vijvers, J. Scholten, M. van de Pol, S. Brons, W. Melissen, T. van der Grift, R. Koch, B. Schweer, U. Samm, V. Philipps, R. A. H. Engeln, D. C. Schram, N. J. L. Cardozo, and A. W. Kleyn, Construction of the plasma-wall experiment Magnum-PSI, Fusion Eng. Des. 85(7–9), 1455 (2010)
https://doi.org/10.1016/j.fusengdes.2010.04.009
41 G. De Temmerman, M. A. van den Berg, J. Scholten, A. Lof, H. J. van der Meiden, H. J. N. van Eck, T. W. Morgan, T. M. de Kruijf, P. A. Z. van Emmichoven, and J. J. Zielinski, High heat flux capabilities of the Magnum-PSI linear plasma device, Fusion Eng. Des. 88(6–8), 483 (2013)
https://doi.org/10.1016/j.fusengdes.2013.05.047
42 C. Li, X. Wu, C. Zhang, H. Ding, G. De Temmerman, and H. J. van der Meiden, Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy, Fusion Eng. Des. 89(7–8), 949 (2014)
https://doi.org/10.1016/j.fusengdes.2014.04.071
43 K. Piip, G. De Temmerman, H. J. van der Meiden, A. Lissovski, J. Karhunen, M. Aints, A. Hakola, P. Paris, M. Laan, J. Likonen, I. Jõgi, J. Kozlova, and H. Mändar, LIBS analysis of tungsten coatings exposed to Magnum PSI ELM-like plasma, J. Nucl. Mater. 463, 919 (2015)
https://doi.org/10.1016/j.jnucmat.2014.11.017
44 P. Paris, A. Hakola, K. Bystrov, G. De Temmerman, M. Aints, I. Jõgi, M. Kiisk, J. Kozlova, M. Laan, J. Likonen, and A. Lissovski, Erosion of marker coatings exposed to Pilot-PSI plasma, J. Nucl. Mater. 438, S754 (2013)
https://doi.org/10.1016/j.jnucmat.2013.01.161
45 C. Li, X. Wu, C. Zhang, H. Ding, J. Hu, and G. N. Luo, In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy, J. Nucl. Mater. 452(1–3), 10 (2014)
https://doi.org/10.1016/j.jnucmat.2014.04.041
46 Q. Xiao, R. Hai, H. Ding, A. Huber, V. Philipps, N. Gierse, and G. Sergienko, In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: Dependence on the magnetic field strength, J. Nucl. Mater. 463, 911 (2015)
https://doi.org/10.1016/j.jnucmat.2014.10.065
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed