Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 117103   https://doi.org/10.1007/s11467-016-0608-0
  本期目录
Strongly correlated Fermi systems as a new state of matter
V. R. Shaginyan1,2(),A. Z. Msezane2,G. S. Japaridze2,K. G. Popov3,V. A. Khodel4,5
1. Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
2. Clark Atlanta University, Atlanta, GA 30314, USA
3. Komi Science Center, Ural Division, RAS, Syktyvkar, 167982, Russia
4. Russian Research Centre Kurchatov Institute, Moscow, 123182, Russia
5. McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA
 全文: PDF(1980 KB)  
Abstract

The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.

Key wordsquantum phase transition    flat bands    non-Fermi-liquid states    strongly correlated electron systems    quantum spin liquids    heavy fermions    quasicrystals    thermoelectric and thermomagnetic effects    scaling behavior    new state of matter
收稿日期: 2016-03-30      出版日期: 2016-10-17
Corresponding Author(s): V. R. Shaginyan   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 117103.
V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter. Front. Phys. , 2016, 11(5): 117103.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0608-0
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/117103
1 L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3(6), 920 (1957)
2 L. D. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 8(1), 70 (1959)
3 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Oxford: Pergamon Press, 1980
4 V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy-fermion metals, Phys. Rep. 492(2–3), 31 (2010)
https://doi.org/10.1016/j.physrep.2010.03.001
5 M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds, Solid-State Sciences182, Springer, Heidelberg, New York, Dordrecht, London, 2015
6 V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1–2), 1 (1994)
https://doi.org/10.1016/0370-1573(94)00059-X
7 V. R. Shaginyan, Universal behavior of heavy-fermion metals near a quantum critical point, JETP Lett. 79(6), 286 (2004)
https://doi.org/10.1134/1.1759411
8 I. Ya. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8(2), 361 (1959)
9 P. Noziéres, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
10 A. Casey, H. Patel, J. Nyeki, B. P. Cowan, and J. J. Saunders, Strongly correlated two dimensional fluid 3He, Low Temp. Phys. 113(3), 293 (1998)
https://doi.org/10.1023/A:1022598600411
11 M. Neumann, J. Nyéki, B. Cowan, and J. Saunders, Bilayer 3He: A simple two-dimensional heavy-fermion system with quantum criticality, Science 317(5843), 1356 (2007)
https://doi.org/10.1126/science.1143607
12 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Universal behavior of two-dimensional 3He at low temperatures, Phys. Rev. Lett. 100(9), 096406 (2008)
https://doi.org/10.1103/PhysRevLett.100.096406
13 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
14 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
15 V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
16 G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
17 G. E. Volovik, T. T. Heikkilá, and N. B. Kopnin, Flat bands in topological media, JETP Lett. 94(3), 252 (2011)
18 G. E. Volovik, From standard model of particle physics to room-temperature superconductivity, Phys. Scr. 215(T164), 014014 (2015)
https://doi.org/10.1088/0031-8949/2015/T164/014014
19 T. T. Heikkilá and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arxiv: 1504.05824, submitted as a chapter to the book on Basic Physics of functionalized Graphite
20 M. Ya. Amusia and V. R.Shaginyan, Fermion condensate as a new state of matter, Contrib. Plasma Phys. 53(10), 721 (2013)
https://doi.org/10.1002/ctpp.201310045
21 D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice, Phys. Rev. Lett. 112(7), 070403 (2014)
https://doi.org/10.1103/PhysRevLett.112.070403
22 M. V. Zverev, V. A. Khodel, V. R. Shaginyan, and M. Baldo, Critical experiments in the search for fermion condensation, JETP Lett. 65(11), 863 (1997)
https://doi.org/10.1134/1.567438
23 H. Löhneysen, Non-Fermi-liquid behaviour in the heavyfermion system CeCu1−xAux, J. Phys.: Condens. Matter 8(48), 9689 (1996)
https://doi.org/10.1088/0953-8984/8/48/003
24 V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh2Si2, Phys. Lett. A 374(4), 659 (2010)
https://doi.org/10.1016/j.physleta.2009.11.057
25 D. Lidsky, J. Shiraishi, Y. Hatsugai, and M. Kohmoto, Simple exactly solvable models of non-Fermi-liquids, Phys. Rev. B 57(3), 1340 (1998)
https://doi.org/10.1103/PhysRevB.57.1340
26 V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Robustness of the Van Hove Scenario for high-Tc superconductors, Phys. Rev. Lett. 89(7), 076401 (2002)
https://doi.org/10.1103/PhysRevLett.89.076401
27 S. S. Lee, Non-Fermi liquid from a charged black hole: A critical Fermi ball, Phys. Rev. D 79(8), 086006 (2009)
https://doi.org/10.1103/PhysRevD.79.086006
28 A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Merging of Landau levels in a strongly-interacting two-dimensional electron system in silicon, Phys. Rev. Lett. 112(18), 186402 (2014)
https://doi.org/10.1103/PhysRevLett.112.186402
29 M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.H. Huang, C. W. Liu, and S. V. Kravchenko, Indication of the fermion condensation in a strongly correlated electron system in SiGe/Si/SiGe quantum wells, arXiv: 1604.08527
30 V. A. Khodel, J. W. Clark, and M. V. Zverev, Topology of the Fermi surface beyond the quantum critical point, Phys. Rev. B 78(7), 075120 (2008)
https://doi.org/10.1103/PhysRevB.78.075120
31 S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, Ground-state instability in systems of strongly interacting fermions, JETP Lett. 68(12), 942 (1998)
https://doi.org/10.1134/1.567952
32 V. A. Khodel, Two scenarios of the quantum critical point, JETP Lett. 86(11), 721 (2008)
https://doi.org/10.1134/S0021364007230087
33 N. Oeschler, S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5–9), 1254 (2008)
https://doi.org/10.1016/j.physb.2007.10.119
34 V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
https://doi.org/10.1016/j.physleta.2009.04.046
35 M. Brando, L. Pedrero, T. Westerkamp, C. Krellner, P. Gegenwart, C. Geibel, and F. Steglich, Magnetization study of the energy scales in YbRh2Si2 under chemical pressure, Phys. Status Solidi B 250(3), 485 (2013)
https://doi.org/10.1002/pssb.201200771
36 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, General properties of phase diagrams of heavy-fermion metals, Europhys. Lett. 106(3), 37001 (2014)
https://doi.org/10.1209/0295-5075/106/37001
37 D. Takahashi, S. Abe, H. Mizuno, D. A. Tayurskii, K. Matsumoto, H. Suzuki, and Y. Onuki, ac susceptibility and static magnetization measurements of CeRu2Si2 at small magnetic fields and ultralow temperatures, Phys. Rev. B 67(18), 180407 (2003)
https://doi.org/10.1103/PhysRevB.67.180407
38 A. W. Rost, S. A. Grigera, J. A. N. Bruin, R. S. Perry, D. Tian, S. Raghu, S. A. Kivelson, and A. P. Mackenzie, Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7, Proc. Natl. Acad. Sci. USA 108(40), 16549 (2011)
https://doi.org/10.1073/pnas.1112775108
39 A. V. Silhanek, N. Harrison, C. D. Batista, M. Jaime, A. Lacerda, H. Amitsuka, and J. A. Mydosh, Quantum critical 5f electrons avoid singularities in U(Ru; Rh)2Si2, Phys. Rev. Lett. 95(2), 026403 (2005)
https://doi.org/10.1103/PhysRevLett.95.026403
40 J. S. Kim, B. Andraka, G. Fraunberger, and G. R. Stewart, Specific heat in a magnetic field: A probe of the magnetic ground-state properties of heavy-fermion Ce(Ru2−xRhx)Si22−yGey, Phys. Rev. B 41(1), 541 (1990)
https://doi.org/10.1103/PhysRevB.41.541
41 V. R. Shaginyan, K. G. Popov, V. A. Stephanovich, V. I. Fomichev, and E. V. Kirichenko, High magnetic fields thermodynamics of heavy fermion metal YbRh2Si2, Europhys. Lett. 93(1), 17008 (2011)
https://doi.org/10.1209/0295-5075/93/17008
42 P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel, P. Kerschl, K-H. Müller, and F. Steglich, High-field phase diagram of the heavy-fermion metal YbRh2Si2, New J. Phys. 8(9), 171 (2006)
https://doi.org/10.1088/1367-2630/8/9/171
43 H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
https://doi.org/10.1103/RevModPhys.79.1015
44 P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
https://doi.org/10.1088/0953-8984/13/35/202
45 J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, C. Pépin, and P. Coleman, The breakup of heavy electrons at a quantum critical point, Nature 424(6948), 524 (2003)
https://doi.org/10.1038/nature01774
46 S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy fermion quantum critical point, Nature 432(7019), 881 (2004)
https://doi.org/10.1038/nature03129
47 Y. Yang, Z. Fisk, H-O. Lee, J. D. Thompson, and D. Pines, Scaling the Kondo lattice, Nature 454(7204), 611 (2008)
https://doi.org/10.1038/nature07157
48 Y. Yang and D. Pines, Universal behavior in heavyelectron materials, Phys. Rev. Lett. 100(9), 096404 (2008)
https://doi.org/10.1103/PhysRevLett.100.096404
49 Y. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
https://doi.org/10.1073/pnas.1407561111
50 P. Wölfle and E. Abrahams, Quasiparticles beyond the Fermi liquid and heavy fermion criticality, Phys. Rev. B 84(4), 041101(R) (2011)
51 E. Abrahams and P. Wölfle, Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition, Proc. Natl. Acad. Sci. USA 109(9), 3238 (2012)
https://doi.org/10.1073/pnas.1200346109
52 Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Quantum Criticality Without Tuning in the Mixed Valence Compound β-YbAlB4, Science 331(6015), 316 (2011)
https://doi.org/10.1126/science.1197531
53 T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349(6247), 506 (2015)
https://doi.org/10.1126/science.1262054
54 K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Quantum critical state in a magnetic quasicrystal, Nat. Mater. 11(12), 1013 (2012)
https://doi.org/10.1038/nmat3432
55 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Common quantum phase transition in quasicrystals and heavy-fermion metals,Phys. Rev. B 87(24), 245122 (2013)
https://doi.org/10.1103/PhysRevB.87.245122
56 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, V. A. Khodel, and M. V. Zverev, Topological basis for understanding the behavior of the heavy-fermion metal β-YbAlB4 under application of magnetic field and pressure, Phys. Rev. B 93(20), 205126 (2016)
https://doi.org/10.1103/PhysRevB.93.205126
57 K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
https://doi.org/10.1103/PhysRevB.81.205108
58 K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
https://doi.org/10.1103/PhysRevB.83.073104
59 K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zerotemperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
https://doi.org/10.1088/0953-8984/16/28/037
60 K. Miyake and H. Kohno, Theory of quasi-universal ratio of Seebeck coefficient to specific heat in zerotemperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
https://doi.org/10.1143/JPSJ.74.254
61 V. ZlatićR. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
https://doi.org/10.1103/PhysRevB.76.085122
62 S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
https://doi.org/10.1103/PhysRevLett.104.096401
63 S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10 Suppl.A), SA002 (2011)
https://doi.org/10.1143/JPSJS.80SA.SA002
64 P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
https://doi.org/10.1103/PhysRevLett.89.056402
65 A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
https://doi.org/10.1103/PhysRevLett.109.096405
66 Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
https://doi.org/10.1103/PhysRevLett.109.156405
67 V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, J. W. Clark, and V. A. Khodel, Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2, Front. Phys. 11(2), 117102 (2016)
https://doi.org/10.1007/s11467-015-0536-3
68 P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
https://doi.org/10.1103/PhysRevB.81.115113
69 T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations in the spin-liquid state of a kagomelattice antiferromagnet, Nature 492(7429), 406 (2012)
https://doi.org/10.1038/nature11659
70 P. Mendels and F. Bert, Quantum kagome antiferromagnet ZnCu3(OH)6Cl2, J. Phys. Soc. Jpn. 79(1), 011001 (2010)
https://doi.org/10.1143/JPSJ.79.011001
71 D. Green, L. Santos, and C. Chamon, Isolated flat bands and spin-1 conical bands in two-dimensional lattices, Phys. Rev. B 82(7), 075104 (2010)
https://doi.org/10.1103/PhysRevB.82.075104
72 T. H. Han, S. Chu, and Y. S. Lee, Refining the spin hamiltonian in the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 using single crystals, Phys. Rev. Lett. 108(15), 157202 (2012)
https://doi.org/10.1103/PhysRevLett.108.157202
73 M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, Magnetic ground state of an experimental S= 1/2 kagome antiferromagnet, Phys. Rev. Lett. 100(15), 157205 (2008)
https://doi.org/10.1103/PhysRevLett.100.157205
74 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Stephanovich, Identification of strongly correlated spin liquid in herbertsmithite, Europhys. Lett. 97(5), 56001 (2012)
https://doi.org/10.1209/0295-5075/97/56001
75 V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Thermodynamic properties of the kagome lattice in herbertsmithite, Phys. Rev. B 84(6), 060401(R) (2011)
76 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Khodel, Scaling in dynamic susceptibility of herbertsmithite and heavy-fermion metals, Phys. Lett. A 376(38–39), 2622 (2012)
https://doi.org/10.1016/j.physleta.2012.07.005
77 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Magnetic-field-induced reentrance of fermi-liquid behavior and spin-lattice relaxation rates in YbCu5−xAux, Phys. Lett. A 373(41), 3783 (2009)
https://doi.org/10.1016/j.physleta.2009.08.011
78 T. Imai, E. A. Nytko, B. M. Bartlett, M. P. Shores, and D. G. Nocera, 63Cu, 35Cl, and 1H NMR in the S= 1/2 kagome lattice ZnCu3(OH)6Cl2, Phys. Rev. Lett. 100(7), 077203 (2008)
https://doi.org/10.1103/PhysRevLett.100.077203
79 P. Carretta, R. Pasero, M. Giovannini, and C. Baines, Magnetic-field-induced crossover from non- Fermi to Fermi liquid at the quantum critical point of YbCu5−xAux, Phys. Rev. B 79(2), 020401 (2009)
https://doi.org/10.1103/PhysRevB.79.020401
80 P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si, Multiple energy scales at a quantum critical point, Science 315(5814), 969 (2007)
https://doi.org/10.1126/science.1136020
81 J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee, Dynamic scaling in the susceptibility of the spin-1/2 kagome lattice antiferromagnet herbertsmithite, Phys. Rev. Lett. 104(14), 147201 (2010)
https://doi.org/10.1103/PhysRevLett.104.147201
82 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Heat transport in magnetic fields by quantum spin liquid in the organic insulators EtMe3Sb[Pd(dmit)2]2 and κ-(BEDTTTF)2Cu2(CN)3, Europhys. Lett. 103(6), 67006 (2013)
https://doi.org/10.1209/0295-5075/103/67006
83 M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M. Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid, Science 328(5983), 1246 (2010)
https://doi.org/10.1126/science.1188200
84 M. Yamashita, T. Shibauchi, and Y. Matsuda, Thermaltransport studies of two-dimensional quantum spin liquids, ChemPhysChem 13(1), 74 (2012)
https://doi.org/10.1002/cphc.201100556
85 W. Knafo, S. Raymond, J. Flouquet, B. Fåk, M. A. Adams, P. Haen, F. Lapierre, S. Yates, and P. Lejay, Anomalous scaling behavior of the dynamical spin susceptibility of Ce0:925La0:075Ru2Si2, Phys. Rev. B 70(17), 174401 (2004)
https://doi.org/10.1103/PhysRevB.70.174401
86 B. Fåk, F. C. Coomer, A. Harrison, D. Visser, and M. E. Zhitomirsky, Spin-liquid behavior in a kagome antiferromagnet: Deuteronium jarosite, Europhys. Lett. 81(1), 17006 (2008)
https://doi.org/10.1209/0295-5075/81/17006
87 V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Strongly correlated quantum spin liquid in herbertsmithite, Sov. Phys. JETP 116(5), 848 (2013)
https://doi.org/10.1134/S1063776113050245
88 D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53(20), 1951 (1984)
https://doi.org/10.1103/PhysRevLett.53.1951
89 T. Fujiwara, Theory of Electronic Structure in Quasicrystals126, Springer Series in Solid-State Sciences, Berlin: Springer-Verlag, 1999
90 R. Widmer, P. Gröning, M. Feuerbacher, and O. Gröning, Experimental signatures of spiky local density of states in quasicrystals, Phys. Rev. B 79(10), 104202 (2009)
https://doi.org/10.1103/PhysRevB.79.104202
91 G. T. de Laissardiere, Spiky density of states in large complex Al-Mn phases, Zeitschrift für Kristallographie- Crystalline Materials 224(1–2), 123 (2009)
92 Y. Kono, T. Sakakibara, C. P. Aoyama, C. Hotta, M. M. Turnbull, C. P. Landee, and Y. Takano, Field-induced quantum criticality and universal temperature dependence of the magnetization of a spin-1/2 Heisenberg chain, Phys. Rev. Lett. 114(3), 037202 (2015)
https://doi.org/10.1103/PhysRevLett.114.037202
93 V. A. Khodel, J. W. Clark, and M. V. Zverev, Superfluid phase transitions in dense neutron matter, Phys. Rev. Lett. 87(3), 031103 (2001)
https://doi.org/10.1103/PhysRevLett.87.031103
94 V. R. Shaginyan, G. S. Japaridze, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Baryon asymmetry resulting from a quantum phase transition in the early universe, Europhys. Lett. 94(6), 69001 (2011)
https://doi.org/10.1209/0295-5075/94/69001
95 V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, and E. V. Kirichenko, Quasi-one-dimensional quantum spin liquid in the Cu(C4H4N2)(NO3)2 insulator, JETP Lett. 103(1), 30 (2016)
https://doi.org/10.1134/S0021364016010136
96 V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, E. V. Kirichenko, and S. A. Artamonov, Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Ann. Phys. (Berlin), 528(6), 483 (2016)
https://doi.org/10.1002/andp.201500352
97 S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems, Prog. Theor. Phys. 5(4), 544 (1950)
https://doi.org/10.1143/ptp/5.4.544
98 J. M. Luttinger, An exactly soluble model of a manyfermion system, Math. Phys. 4(9), 1154 (1963)
https://doi.org/10.1063/1.1704046
99 F. D. M. Haldane, Luttinger liquid theory of onedimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Phys. C 14(19), 2585 (1981)
100 F. D. M. Haldane, General relation of correlation exponents and spectral properties of one-dimensional fermi systems: Application to the anisotropic S= 1/2 Heisenberg chain, Phys. Rev. Lett. 45(16), 1358 (1980)
https://doi.org/10.1103/PhysRevLett.45.1358
101 A. V. Rozhkov, Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian, Eur. Phys. J. B 47(2), 193 (2005)
https://doi.org/10.1140/epjb/e2005-00312-3
102 A. V. Rozhkov, One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior, Phys. Rev. Lett. 112(10), 106403 (2014)
https://doi.org/10.1103/PhysRevLett.112.106403
103 A. G. Lebed, Non-Fermi-liquid crossovers in a quasi onedimensional conductor in a tilted magnetic fleld, Phys. Rev. Lett. 115(15), 157001 (2015)
https://doi.org/10.1103/PhysRevLett.115.157001
104 Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, T/B scaling of magnetization in the mixed valent compound β-YbAlB4, J. Phys. Conf. Ser. 391(1), 012041 (2012)
https://doi.org/10.1088/1742-6596/391/1/012041
105 M. Jeong and H. M. Rónnow, Quantum critical scaling for a Heisenberg spin-1/2 chain around saturation, Phys. Rev. B 92(18), 180409(R) (2015)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed