Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114211   https://doi.org/10.1007/s11467-016-0600-7
  本期目录
Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China
Yang Zhao (赵洋)1,Lei Zhang (张雷)1,2(),Shu-Xia Zhao (赵书霞)1,Yu-Fang Li (李郁芳)1,Yao Gong (弓瑶)1,Lei Dong (董磊)1,2,Wei-Guang Ma (马维光)1,2,Wang-Bao Yin (尹王保)1,2(),Shun-Chun Yao (姚顺春)3,Ji-Dong Lu (陆继东)3,Lian-Tuan Xiao (肖连团)1,2,Suo-Tang Jia (贾锁堂)1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3. School of Electric Power, South China University of Technology, Guangzhou 510640, China
 全文: PDF(10973 KB)  
Abstract

Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical spectroscopy technique. This review presents the main recent developments in China regarding the implementation of LIBS for coal analysis. The paper mainly focuses on the progress of the past few years in the fundamentals, data pretreatment, calibration model, and experimental issues of LIBS and its application to coal analysis. Many important domestic studies focusing on coal quality analysis have been conducted. For example, a proposed novel hybrid quantification model can provide more reproducible quantitative analytical results; the model obtained the average absolute errors (AREs) of 0.42%, 0.05%, 0.07%, and 0.17% for carbon, hydrogen, volatiles, and ash, respectively, and a heat value of 0.07 MJ/kg. Atomic/ionic emission lines and molecular bands, such as CN and C2, have been employed to generate more accurate analysis results, achieving an ARE of 0.26% and a 0.16% limit of detection (LOD) for the prediction of unburned carbon in fly ashes. Both laboratory and on-line LIBS apparatuses have been developed for field application in coal-fired power plants. We consider that both the accuracy and the repeatability of the elemental and proximate analysis of coal have increased significantly and further efforts will be devoted to realizing large-scale commercialization of coal quality analyzer in China.

Key wordsLaser-induced breakdown spectroscopy (LIBS)    coal quality    elemental analysis    proximate analysis    calibration model
收稿日期: 2016-01-06      出版日期: 2016-10-17
Corresponding Author(s): Lei Zhang (张雷),Wang-Bao Yin (尹王保)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114211.
Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China. Front. Phys. , 2016, 11(6): 114211.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0600-7
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114211
5 L. Zhang, W. G. Ma, L. Dong, X. J. Yan, Z. Y. Hu, Z. X. Li, Y. Z. Zhang, L. Wang, W. B. Yin, and S. T. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
https://doi.org/10.1366/10-06213
6 Z. Y. Hu, L. Zhang, W. B. Yin, W. G. Ma, L. Dong, and S. T. Jia, Application of laser-induced breakdown spectroscopy to coal-fired power plants and soil contaminants on-line monitoring, J. Atm. Envir. Opt. 8(1), 26 (2013)
7 J. J. Fan, D. Huang, X. Wang, L. Zhang, W. G. Ma, L. Dong, W. B. Yin, and S. T. Jia, Research on the identification method of LTE condition in the laser-induced plasma, Spectrosc. Spect. Anal. 34(12), 3183 (2014)
8 Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
https://doi.org/10.1007/s11467-012-0262-z
9 J. P. Zheng, J. D. Lu, B. Zhang, M. R. Dong, S. C. Yao, W. Y. Lu, and X. Dong, Experimental study of laser-induced breakdown spectroscopy (LIBS) for direct analysis of coal particle flow, Appl. Spectrosc. 68(6), 672 (2014)
https://doi.org/10.1366/13-07278
10 S. C. Yao, J. C. Chen, J. D. Lu, Y. L. Shen, and G. Pan, Influence of C-Fe lines interference correction on laserinduced breakdown spectroscopy measurement of unburned carbon in fly ash, Spectrosc. Spect. Anal. 35(6), 1719 (2015)
11 M. R. Dong, X. L. Mao, J. J. Gonzalez, J. D. Lu, and R. E. Russo, Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium, J. Anal. At. Spectrom. 27(12), 2066 (2012)
https://doi.org/10.1039/c2ja30222e
12 M. Y. Chen, T. B. Yuan, Z. Y. Hou, Z. Wang, and Y. Wang, Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy, Spectrochim. Acta B 112, 23 (2015)
https://doi.org/10.1016/j.sab.2015.08.003
13 L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
https://doi.org/10.1039/c1ja10194c
14 Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
https://doi.org/10.1016/j.sab.2012.01.005
15 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
https://doi.org/10.1366/13-07345
16 Z. Y. Hu, L. Zhang, W. G. Ma, X. J. Yan, Z. X. Li, Y. Z. Zhang, L. Wang, L. Dong, W. B. Yin, and S. T. Jia, Analysis of software for identifying spectral line of laserinduced breakdown spectroscopy based on LabVIEW, Spectrosc. Spect. Anal. 32(3), 602 (2012)
1 Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
https://doi.org/10.1039/C5JA00475F
2 S. C. Yao, Y. L. Shen, K. J. Yin, G. Pan, and J. D. Lu, Rapidly measuring unburned carbon in fly ash using molecular CN by laser-induced breakdown spectroscopy, Energy & Fuels 29, 1257 (2015)
https://doi.org/10.1021/ef502174q
17 M. R. Dong, D. Oropeza, J. Chirinos, J. J. González, J. D. Lu, X. L. Mao, and R. E. Russo, Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry, Spectrochim. Acta B 109, 44 (2015)
https://doi.org/10.1016/j.sab.2015.04.008
18 L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, Analysis of pulverized coal by laser-induced breakdown spectroscopy, Plasma Sci. Technol. 7(5), 3041 (2005)
https://doi.org/10.1088/1009-0630/7/5/015
19 S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
https://doi.org/10.1039/c2ja10229c
20 M. R. Dong, J. D. Lu, S. C. Yao, Z. M. Zhong, J. Y. Li, and W. Y. Lu, Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N, Opt. Express 19(18), 17021 (2011)
https://doi.org/10.1364/OE.19.017021
3 L. Zhang, Y. Gong, Y. F. Li, X. Wang, J. J. Fan, L. Dong, W. G. Ma, W. B. Yin, and S. T. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B 113, 167 (2015)
https://doi.org/10.1016/j.sab.2015.09.021
4 W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
https://doi.org/10.1366/000370209788964458
21 L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
https://doi.org/10.1366/000370208784046786
22 S. C. Yao, J. L. Xu, K. J. Bai, and J. D. Lu, Improved measurement performance of inorganic elements in coal by laser-induced breakdown spectroscopy coupled with internal standardization, Plasma Sci. Technol. 17(11), 938 (2015)
https://doi.org/10.1088/1009-0630/17/11/09
23 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
https://doi.org/10.1039/c1ja10113g
24 Z. Wang, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
https://doi.org/10.1039/c1ja10041f
25 J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
https://doi.org/10.1007/s00216-011-4865-y
26 T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
https://doi.org/10.1039/c3ja50097g
27 J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
https://doi.org/10.1366/11-06393
28 S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
https://doi.org/10.1366/10-06190
29 T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
https://doi.org/10.1016/j.aca.2013.11.027
30 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
https://doi.org/10.1016/j.sab.2014.06.017
31 M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
https://doi.org/10.1039/c1ja10109a
32 M. Gaft, E. Dvir, H. Modiano, and U. Schone, Laser induced breakdown spectroscopy machine for online ash analyses in coal, Spectrochim. Acta B 63(10), 1177 (2008)
https://doi.org/10.1016/j.sab.2008.06.007
33 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, Wavelength dependence in the analysis of carbon content in coal by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy, Plasma Sci. Technol. 8(8), 621 (2015)
https://doi.org/10.1088/1009-0630/17/8/02
34 X. W. Li, X. L. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
https://doi.org/10.1088/1009-0630/17/11/07
35 X. Wang, D. Huang, J. J. Fan, L. Zhang, W. G. Ma, L. Dong, W. B. Yin, and S. T. Jia, Research on locking of the output power of pulsed laser in laser-induced breakdown spectroscopy, Spectrosc. Spect. Anal. 34(9), 2342 (2014)
36 X. Wang, L. Zhang, J. J. Fan, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, and S. T. Jia, Parameters optimization of laser-induced breakdown spectroscopy experimental setup for the case with beam expander, Plasma Sci. Technol. 17(11), 914 (2015)
https://doi.org/10.1088/1009-0630/17/11/04
37 L. Zhang, W. G. Ma, X. J. Yan, Z. X. Li, Z. Y. Hu, Y. Z. Zhang, L. Wang, L. Dong, W. B. Yin, and S. T. Jia, Research on parameters optimization of laserinduced breakdown spectroscopy based experimental device, Spectrosc. Spect. Anal. 31(9), 2355 (2011)
38 J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Li, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy, Opt. Laser Technol. 41(8), 907 (2009)
https://doi.org/10.1016/j.optlastec.2009.03.003
39 Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(S6), A1011 (2012)
https://doi.org/10.1364/OE.20.0A1011
40 Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)
https://doi.org/10.1364/OE.21.015974
41 Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)
https://doi.org/10.1364/OE.22.012909
42 X. W. Li, H. L. Yin, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B 111, 102 (2015)
https://doi.org/10.1016/j.sab.2015.07.007
43 T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)
https://doi.org/10.1364/AO.51.000B22
44 M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, A comparison of multivariate libs and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames, Fuel 106(2), 318 (2013)
https://doi.org/10.1016/j.fuel.2012.10.079
45 D. Body, and B. L. Chadwick, Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system, Spectrochim. Acta B 56(6), 725 (2001)
https://doi.org/10.1016/S0584-8547(01)00186-0
46 M. P. Mateo, G. Nicolas, and A. Yañez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)
https://doi.org/10.1016/j.apsusc.2007.08.043
47 F. J. Wallis, B. L. Chadwick, and R. J. S. Morrison, Analysis of lignite using laser-induced breakdown spectroscopy, Appl. Spectrosc. 54(8), 1231 (2000)
https://doi.org/10.1366/0003702001950814
48 T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B 65(8), 734 (2010)
https://doi.org/10.1016/j.sab.2010.04.020
49 T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Characterization of coal fly ash components by laserinduced breakdown spectroscopy, Spectrochim. Acta B 64(10), 1093 (2009)
https://doi.org/10.1016/j.sab.2009.07.032
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed