Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 136801   https://doi.org/10.1007/s11467-017-0704-8
  本期目录
Structural properties of water confined by phospholipid membranes
Fausto Martelli1(), Hsin-Yu Ko1, Carles Calero Borallo2,3, Giancarlo Franzese2,3()
1. Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
2. Secció de Física Estadística i Interdisciplinària–Departament de Física de la Matèria Condensada, Facultat de Física Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona, Spain
3. Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Joan XXIII S/N, 08028 Barcelona, Spain
 全文: PDF(1416 KB)  
Abstract

Biological membranes are essential for cell life and hydration. Water provides the driving force for the assembly and stability of many cell components. Here, we study the structural properties of water in a phospholipid membrane. We characterize the local structures, inspecting the intermediate range order (IRO) and adopting a sensitive local order metric recently proposed by Martelli et al. that measures and grades the degree of overlap of the local environment with the structures of perfect ice. Close to the membrane, water acquires a high IRO and changes its dynamical properties; i.e., its translational and rotational degrees of freedom slow in a region that extends over ≃ 1 nm from the membrane interface. Surprisingly, we show that at distances as far as ≃ 2:5 nm from the interface, although the bulk-like dynamics are recovered, the IRO of water is still slightly higher than that in the bulk under the same thermodynamic conditions. Therefore, the water-membrane interface has a structural effect at ambient conditions that propagates further than the often-invoked 1-nm length scale. Consequently, this should be considered when analyzing experimental data of water confined by membranes and could help us to understand the role of water in biological systems.

Key wordsconfined water    dimyristoylphosphatidylcholines    DMPC    order parameter
收稿日期: 2017-03-22      出版日期: 2017-09-07
Corresponding Author(s): Fausto Martelli,Giancarlo Franzese   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 136801.
Fausto Martelli, Hsin-Yu Ko, Carles Calero Borallo, Giancarlo Franzese. Structural properties of water confined by phospholipid membranes. Front. Phys. , 2018, 13(1): 136801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0704-8
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/136801
1 I. W.Hamley, Introduction to Soft Matter, John Wiley and Sons, West Sussex, England, 2007
2 J.Fitter, R. E.Lechner, and N. A.Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B103(38), 8036 (1999)
https://doi.org/10.1021/jp9912410
3 M.Trapp, T.Gutberlet, F.Juranyi,T.Unruh, B.Demé, M.Tehei, and J.Peters, Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering, J. Chem. Phys. 133(16), 164505(2010)
https://doi.org/10.1063/1.3495973
4 S. R.Wassall, Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane, Biophys. J. 71(5), 2724(1996)
https://doi.org/10.1016/S0006-3495(96)79463-8
5 V. V.Volkov, D. J.Palmer, and R.Righini, Distinct water species confined at the interface of a phospholipid membrane, Phys. Rev. Lett. 99(7), 078302(2007)
https://doi.org/10.1103/PhysRevLett.99.078302
6 W.Zhao, D. E.Moilanen, E. E.Fenn, and M. D.Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J. Am. Chem. Soc. 130(42), 13927(2008)
https://doi.org/10.1021/ja803252y
7 K. J.Tielrooij, D.Paparo, L.Piatkowski, H. J.Bakker, and M.Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophys. J. 97(9), 2484(2009)
https://doi.org/10.1016/j.bpj.2009.08.024
8 W.Hua, D.Verreault, and H. C.Allen, Solvation of calciumphosphate headgroup complexes at the dppc/aqueous interface, ChemPhysChem16(18), 3910(2015)
https://doi.org/10.1002/cphc.201500720
9 T.Róg, K.Murzyn, and M.Pasenkiewicz-Gierula, The dynamics of water at the phospholipid bilayer surface: A molecular dynamics simulation study, Chem. Phys. Lett. 352(5–6), 323(2002)
https://doi.org/10.1016/S0009-2614(02)00002-7
10 S. Y.Bhideand M. L.Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers, J. Chem. Phys. 123(22), 224702(2005)
https://doi.org/10.1063/1.2132277
11 M. L.Berkowitz, D. L.Bostick, and S.Pandit, Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations, Chem. Rev. 106(4), 1527(2006)
https://doi.org/10.1021/cr0403638
12 Y.von Hansen, S.Gekle, and R. R.Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Phys. Rev. Lett. 111(11), 118103(2013)
https://doi.org/10.1103/PhysRevLett.111.118103
13 Z.Zhangand M. L.Berkowitz, Orientational dynamics of water in phospholipid bilayers with different hydration levels, J. Phys. Chem. B113(21), 7676(2009)
https://doi.org/10.1021/jp900873d
14 S. M.Gruenbaumand J. L.Skinner, Vibrational spectroscopy of water in hydrated lipid multi-bilayers (i): Infrared spectra and ultrafast pump-probe observables, J. Chem. Phys. 135(7), 075101(2011)
https://doi.org/10.1063/1.3615717
15 C.Calero,E. H.Stanley, and G.Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials9(5), 319(2016)
https://doi.org/10.3390/ma9050319
16 F.Martelli, H. Y.Ko, E. C.Oǧuz, and R.Car, A local order metric for condensed phase environments, arXiv: 1609.03123 [physics.comp-ph]
17 M.De Marzio, G.Camisasca, M. M.Conde, M.Rovere, and P.Gallo, Structural properties and fragile to strong transition in confined water, J. Chem. Phys. 146(8), 084505(2017)
https://doi.org/10.1063/1.4975624
18 R.Zangiand B. J.Berne, Temperature dependence of dimerization and dewetting of large-scale hydrophobes: A molecular dynamics study, J. Phys. Chem. B112(29), 8634(2008)
https://doi.org/10.1021/jp802135c
19 J. C.Phillips, R.Braun, W.Wang, J.Gumbart, E.Tajkhorshid, E.Villa, C.Chipot, R. D.Skeel, L.Kalé, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
https://doi.org/10.1002/jcc.20289
20 J. B.Klauda, R. M.Venable, J. A.Freites, J. W.O’Connor, D. J.Tobias, C.Mondragon-Ramirez, I.Vorobyov, A. D.Jr MacKerell, and R. W.Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types, J. Phys. Chem. B114(23), 7830(2010)
https://doi.org/10.1021/jp101759q
21 J. B.Lim, B.Rogaski, and J. B.Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B116(1), 203(2012)
https://doi.org/10.1021/jp207925m
22 W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
https://doi.org/10.1063/1.445869
23 Jr. A. D.MacKerell, D.Bashford, M.Bellott, Jr. R. L.Dunbrack, J. D.Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B102(18), 3586(1998)
24 U.Essmann, L.Perera, M. L.Berkowitz, T.Darden, H.Lee, and L. G.Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19), 8577(1995)
https://doi.org/10.1063/1.470117
25 H. J. C.Berendsen, J. P. M.Postma, W. F.van Gunsteren, A.DiNola, and J. R.Haak, Molecular dynamics with coupling to an external bath, J. Phys. Chem. 81(8), 3684(1984)
https://doi.org/10.1063/1.448118
26 S. E.Feller, Y.Zhang, R. W.Pastor, and B. R.Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Phys. Chem. 103(11), 4613(1995)
https://doi.org/10.1063/1.470648
27 R. C.Read and J. R.Wilson, An Atlas of Graphs, Oxford University Press, 2016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed