Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 124206   https://doi.org/10.1007/s11467-017-0702-x
  本期目录
Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons
Yong-Yao Li1, Zhi-Wei Fan2, Zhi-Huan Luo2, Yan Liu2, He-Xiang He1, Jian-Tao Lü1, Jia-Ning Xie1, Chun-Qing Huang1(), Hai-Shu Tan1
1. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
2. Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(12522 KB)  
Abstract

We study the spontaneous symmetry breaking of dipolar Bose–Einstein condensates trapped in stacks of two-well systems, which may be effectively built as one-dimensional trapping lattices sliced by a repelling laser sheet. If the potential wells are sufficiently deep, the system is modeled by coupled discrete Gross–Pitaevskii equations with nonlocal self- and cross-interaction terms representing dipole–dipole interactions. When the dipoles are not polarized perpendicular or parallel to the lattice, the crossinteraction is asymmetric, replacing the familiar symmetric two-component solitons with a new species of cross-symmetric or-asymmetric ones. The orientation of the dipole moments and the interwell hopping rate strongly affect the shapes of the discrete two-component solitons as well as the characteristics of the cross-symmetry breaking and the associated phase transition. The sub- and super-critical types of cross-symmetry breaking can be controlled by either the hopping rate between the components or the total norm of the solitons. The effect of the interplay between the contact nonlinearity and the dipole angle on the cross-symmetry breaking is also discussed.

Key wordsdiscrete matter-wave solitons    two-component systems    dipole–dipole interactions    cross-symmetry breaking
收稿日期: 2017-04-24      出版日期: 2017-09-22
Corresponding Author(s): Chun-Qing Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 124206.
Yong-Yao Li, Zhi-Wei Fan, Zhi-Huan Luo, Yan Liu, He-Xiang He, Jian-Tao Lü, Jia-Ning Xie, Chun-Qing Huang, Hai-Shu Tan. Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons. Front. Phys. , 2017, 12(5): 124206.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0702-x
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/124206
1 A.Griesmaier, Generation of a dipolar Bose–Einstein condensate, J. Phys. B40(14), R91 (2007)
https://doi.org/10.1088/0953-4075/40/14/R01
2 T.Lahaye, C.Menotti, L.Santos, M.Lewenstein, and T.Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401(2009)
https://doi.org/10.1088/0034-4885/72/12/126401
3 M. A.Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71(2008)
https://doi.org/10.1016/j.physrep.2008.04.007
4 S.Giovanazzi,A.Görlitz, and T.Pfau, Tuning the dipolar interaction in quantum gases, Phys. Rev. Lett. 89(13), 130401(2002)
https://doi.org/10.1103/PhysRevLett.89.130401
5 Y.Li, J.Liu, W.Pang, and B. A.Malomed, Matterwave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength, Phys. Rev. A88(5), 053630(2013)
https://doi.org/10.1103/PhysRevA.88.053630
6 T.Lahaye, T.Koch, B.Fröhlich, M.Fattori, J.Metz, A.Griesmaier, S.Giovanazzi, and T.Pfau, Strong dipolar effects in a quantum ferrofluid, Nature448(7154), 672(2007)
https://doi.org/10.1038/nature06036
7 H.Saito, Y.Kawaguchi, and M.Ueda, Ferrofluidity in a two-component dipolar Bose–Einstein condensate, Phys. Rev. Lett. 102(23), 230403(2009)
https://doi.org/10.1103/PhysRevLett.102.230403
8 H.Kadau, M.Schmitt, M.Wenzel, C.Wink, T.Maier, I.Ferrier-Barbut, and T.Pfau, Observing the Rosensweig instability of a quantum ferrofluid, Nature530(7589), 194(2016)
https://doi.org/10.1038/nature16485
9 R.Richterand I. V.Barashenkov, Two-dimensional solitons on the surface of magnetic fluids, Phys. Rev. Lett. 94(18), 184503(2005)
https://doi.org/10.1103/PhysRevLett.94.184503
10 L.Santos, G. V.Shlyapnikov, and M.Lewenstein, Roton–Maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett. 90(25), 250403(2003)
https://doi.org/10.1103/PhysRevLett.90.250403
11 M.Klawunn, R.Nath, P.Pedri, andL.Santos, Transverse instability of straight vortex lines in dipolar Bose– Einstein condensates, Phys. Rev. Lett. 100(24), 240403(2008)
https://doi.org/10.1103/PhysRevLett.100.240403
12 R. M.Wilson, S.Ronen, J. L.Bohn, and H.Pu, Manifestations of the roton mode in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(24), 245302(2008)
https://doi.org/10.1103/PhysRevLett.100.245302
13 D.Hufnagl, R.Kaltseis, V.Apaja, and R. E.Zillich, Roton–roton crossover in strongly correlated dipolar Bose–Einstein Condensates, Phys. Rev. Lett. 107(6), 065303(2011)
https://doi.org/10.1103/PhysRevLett.107.065303
14 R.Nathand L.Santos, Faraday patterns in twodimensional dipolar Bose–Einstein condensates, Phys. Rev. A81(3), 033626(2010)
https://doi.org/10.1103/PhysRevA.81.033626
15 K.komy, R.Nath, and L.Santos, Faraday patterns in coupled one-dimensional dipolar condensates, Phys. Rev. A86(2), 023620(2012)
https://doi.org/10.1103/PhysRevA.86.023620
16 A.Bühlerand H. P.Büchler, Supersolid phase in atomic gases with magnetic dipole interaction, Phys. Rev. A84(2), 023607(2011)
https://doi.org/10.1103/PhysRevA.84.023607
17 A.Maluckov, G.Gligoric, Lj.Hadžievski, B. A.Malomed, and T.Pfau, Stable periodic density waves in dipolar Bose–Einstein condensates trapped in optical lattices, Phys. Rev. Lett. 108(14), 140402(2012)
https://doi.org/10.1103/PhysRevLett.108.140402
18 C.Ticknor, R. M.Wilson, and J. L.Bohn, Anisotropic superfluidity in a dipolar Bose gas, Phys. Rev. Lett. 106(6), 065301(2011)
https://doi.org/10.1103/PhysRevLett.106.065301
19 A. A.Wood, B. H. J.McKellar, and A. M.Martin, Persistent superfluid flow arising from the He–McKellar– Wilkens effect in molecular dipolar condensates, Phys. Rev. Lett. 116(25), 250403(2016)
https://doi.org/10.1103/PhysRevLett.116.250403
20 P. M.Lushnikov, Collapse of Bose–Einstein condensates with dipole–dipole interactions, Phys. Rev. A66, 051601(2002)
https://doi.org/10.1103/PhysRevA.66.051601
21 D. C. E.Bortolotti, S.Ronen, J. L.Bohn, and D.Blume, Scattering length instability in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 97(16), 160402(2006)
https://doi.org/10.1103/PhysRevLett.97.160402
22 C.Ticknor, N. G.Parker,A.Melatos, S. L.Cornish, D. H. J.O’Dell, and A. M.Martin, Collapse times of dipolar Bose–Einstein condensates, Phys. Rev. A78, 061607(2008)
https://doi.org/10.1103/PhysRevA.78.061607
23 T.Lahaye, J.Metz, B.Fröhlich, T.Koch, M.Meister, A.Griesmaier, T.Pfau, H.Saito, Y.Kawaguchi, and M.Ueda, d-wave collapse and explosion of a dipolar Bose– Einstein condensate, Phys. Rev. Lett. 101(8), 080401(2008)
https://doi.org/10.1103/PhysRevLett.101.080401
24 I.Ferrier-Barbut, H.Kadau, M.Schmitt, M.Wenzel, and T.Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301(2016)
https://doi.org/10.1103/PhysRevLett.116.215301
25 K.-T.Xiand H.Saito, Droplet formation in a Bose– Einstein condensate with strong dipole–dipole interaction, Phys. Rev. A93, 011604(2016)
https://doi.org/10.1103/PhysRevA.93.011604
26 F.Wächtlerand L.Santos, Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A93, 061603(2016)
https://doi.org/10.1103/PhysRevA.93.061603
27 D.Baillie, R. M.Wilson, R. N.Bisset, and P. B.Blakie, Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A94, 021602(2016)
https://doi.org/10.1103/PhysRevA.94.021602
28 M.Klawunnand L.Santos, Hybrid multisite excitations in dipolar condensates in optical lattices, Phys. Rev. A80(1), 013611(2009)
https://doi.org/10.1103/PhysRevA.80.013611
29 S.Müller, J.Billy, E. A. L.Henn, H.Kadau, A.Griesmaier, M.Jona-Lasinio, L.Santos, and T.Pfau, Stability of a dipolar Bose–Einstein condensate in a onedimensional lattice, Phys. Rev. A84(5), 053601(2011)
https://doi.org/10.1103/PhysRevA.84.053601
30 R. M.Wilsonand J. L.Bohn, Emergent structure in a dipolar Bose gas in a one-dimensional lattice, Phys. Rev. A83(2), 023623(2011)
https://doi.org/10.1103/PhysRevA.83.023623
31 K.Gawryluk, K.Bongs, and M.Brewczyk, How to observe dipolar Effects in spinor Bose–Einstein condensates, Phys. Rev. Lett. 106(14), 140403(2011)
https://doi.org/10.1103/PhysRevLett.106.140403
32 Q.Zhaoand Q.Gu, Trapped Bose–Einstein condensates in synthetic magnetic field, Front. Phys. 10(5), 100306(2015)
https://doi.org/10.1007/s11467-015-0505-x
33 W.Królikowski, O.Bang, N. I.Nikolov, D.Neshev, J.Wyller, J. J.Rasmussen, andD.Edmundson, Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media, J. Opt. B Quantum Semiclassical Opt. 6(5), S288(2004)
https://doi.org/10.1088/1464-4266/6/5/017
34 M.Pecciantiand G.Assanto, Nematicons, Phys. Rep. 516(4–5), 147(2012)
https://doi.org/10.1016/j.physrep.2012.02.004
35 W.Królikowskiand O.Bang, Solitons in nonlocal nonlinear media: Exact solutions, Phys. Rev. E63(1), 016610(2000)
https://doi.org/10.1103/PhysRevE.63.016610
36 S.Skupin, O.Bang, D.Edmundson, and W.Krolikowski,Stability of two-dimensional spatial solitons in nonlocal nonlinear media, Phys. Rev. E73(6), 066603(2006)
https://doi.org/10.1103/PhysRevE.73.066603
37 P.Pedriand L.Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404(2005)
https://doi.org/10.1103/PhysRevLett.95.200404
38 I.Tikhonenkov, B. A.Malomed, and A.Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406(2008)
https://doi.org/10.1103/PhysRevLett.100.090406
39 J.Cuevas, B. A.Malomed, P. G.Kevrekidis, and D. J.Frantzeskakis, Solitons in quasi-one-dimensional Bose– Einstein condensates with competing dipolar and local interactions, Phys. Rev. A79(5), 053608(2009)
https://doi.org/10.1103/PhysRevA.79.053608
40 F.Kh. Abdullaev, A.Gammal, B. A.Malomed, and L.Tomio, Bright solitons in quasi-one dimensional dipolar condensates with spatially modulated interactions, Phys. Rev. A87(6), 063621(2013)
https://doi.org/10.1103/PhysRevA.87.063621
41 M.Raghunandan, C.Mishra, K.Lakomy, P.Pedri, L.Santos, and R.Nath, Two-dimensional bright solitons in dipolar Bose–Einstein condensates with titled dipoles, Phys. Rev. A92(1), 013637(2015)
https://doi.org/10.1103/PhysRevA.92.013637
42 S. K.Adhikariand L. E.Young-S, Statics and dynamics of a binary dipolar Bose–Einstein condensate soliton, J. Phys. B: At. Mol. Opt. Phys. 47(1), 015302(2014)
https://doi.org/10.1088/0953-4075/47/1/015302
43 J.Huang, X.Jiang, H.Chen, Z.Fan, W.Pang, and Y.Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507(2015)
https://doi.org/10.1007/s11467-015-0501-1
44 G.Chen, Y.Liu, and H.Wang, Mixed-mode solitons in quadrupolar BECs with spin–orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
https://doi.org/10.1016/j.cnsns.2016.12.028
45 R.Nath, P.Pedri, and L.Santos, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 101(21), 210402(2008)
https://doi.org/10.1103/PhysRevLett.101.210402
46 T.Bland, M. J.Edmonds, N. P.Proukakis, A. M.Martin, D. H. J.O’Dell, and N. G.Parker, Controllable nonlocal interactions between dark solitons in dipolar condensates, Phys. Rev. A92(6), 063601(2015)
https://doi.org/10.1103/PhysRevA.92.063601
47 K.Pawłowskiand K.Rza ¸żewski, Dipolar dark solitons, New J. Phys. 17(10), 105006(2015)
https://doi.org/10.1088/1367-2630/17/10/105006
48 M. J.Edmonds, T.Bland, D. H. J.O’Dell, and N. G.Parker, Exploring the stability and dynamics of dipolar matter-wave dark solitons, Phys. Rev. A93(6), 063617(2016)
https://doi.org/10.1103/PhysRevA.93.063617
49 V. M.Lashkin, Two-dimensional nonlocal vortices, multipole solitons, and rotating multisolitons in dipolar Bose–Einstein condensates,Phys. Rev. A75(4), 043607(2007)
https://doi.org/10.1103/PhysRevA.75.043607
50 I.Tikhonenkov, B. A.Malomed, and A.Vardi, Vortex solitons in dipolar Bose–Einstein condensates, Phys. Rev. A78, 043614(2008)
https://doi.org/10.1103/PhysRevA.78.043614
51 G.Gligorić, A.Maluckov, L.Hadžievski, and B. A.Malomed, Bright solitons in the one-dimensional discrete Gross–Pitaevskii equation with dipole–dipole interactions, Phys. Rev. A78(6), 063615(2008)
https://doi.org/10.1103/PhysRevA.78.063615
52 G.Gligorić, A.Maluckov, M.Stepič L.Hadžievski, and B. A.Malomed, Two-dimensional discrete solitons in dipolar Bose–Einstein condensates, Phys. Rev. A81(1), 013633(2010)
https://doi.org/10.1103/PhysRevA.81.013633
53 H.Chen, Y.Liu, Q.Zhang, Y.Shi, W.Pang, and Y.Li, Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices, Phys. Rev. A93(5), 053608(2016)
https://doi.org/10.1103/PhysRevA.93.053608
54 Z.Luo, Y.Li, W.Pang, and Y.Liu, Dipolar matterwave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities, J. Phys. Soc. Jpn. 82(9), 094401(2013)
https://doi.org/10.7566/JPSJ.82.094401
55 Y.Xu, Y.Zhang, and C.Zhang, Bright solitons in a twodimensional spin–orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A92(1), 013633(2015)
https://doi.org/10.1103/PhysRevA.92.013633
56 X.Jiang, Z.Fan, Z.Chen, W.Pang, Y.Li, and B. A.Malomed, Two-dimensional solitons in dipolar Bose– Einstein condensates with spin–orbit-coupling, Phys. Rev. A93(2), 023633(2016)
https://doi.org/10.1103/PhysRevA.93.023633
57 Y.Li, Y.Liu, Z.Fan, W.Pang, S.Fu, and B. A.Malomed, Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A95(6), 063613(2017)
https://doi.org/10.1103/PhysRevA.95.063613
58 Y.Zhang, M. E.Mossman, T.Busch, P.Engels, and C.Zhang, Properties of spin–orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103(2016)
https://doi.org/10.1007/s11467-016-0560-y
59 B. B.Baizakov, F. Kh.Abdullaev, B. A.Malomed, and M.Salerno, Solitons in Tonks–Girardeau gas with dipolar interactions, J. Phys. At. Mol. Opt. Phys. 42(17), 175302(2009)
https://doi.org/10.1088/0953-4075/42/17/175302
60 Z.Fan, Y.Shi, Y.Liu, W.Pang, Y.Li, and B. A.Malomed, Cross-symmetric dipolar-matter-wave solitons in double-well chains, Phys. Rev. E95(3), 032226(2017)
https://doi.org/10.1103/PhysRevE.95.032226
61 B. A.Malomed(Ed.), Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, Berlin: Springer, 2013
https://doi.org/10.1007/978-3-642-21207-9
62 B. A.Malomed, Spontaneous symmetry breaking in nonlinear systems: An overview and a simple model, in: Nonlinear Dynamics: Materials, Theory and Experiments, edited by M. Tlidi and M. Clerc, Springer Proceedings in PhysicsVol. 173, Berlin: Springer, 2016 pp 97–112
63 S.Trillo, E. M.Wright, G. I.Stegeman, and S.Wabnitz, Soliton switching in fiber nonlinear directional couplers, Opt. Lett. 13(8), 672(1988)
https://doi.org/10.1364/OL.13.000672
64 S. R.Friberg, A. M.Weiner, Y.Silberberg, B. G.Sfez, and P. S.Smith, Femtosecond switching in a dual-corefiber nonlinear coupler, Opt. Lett. 13(10), 904(1988)
https://doi.org/10.1364/OL.13.000904
65 F. Kh.Abdullaev, R. M.Abrarov, and S. A.Darmanyan, Dynamics of solitons in coupled optical fibers, Opt. Lett. 14(2), 131(1989)
https://doi.org/10.1364/OL.14.000131
66 E. M.Wright, G. I.Stegeman, and S.Wabnitz, Solitarywave decay and symmetry-breaking instabilities in twomode fibers, Phys. Rev. A40(8), 4455(1989)
https://doi.org/10.1103/PhysRevA.40.4455
67 C.Paréand M.Florjańczyk, Approximate model of soliton dynamics in all-optical couplers, Phys. Rev. A41(11), 6287(1990)
https://doi.org/10.1103/PhysRevA.41.6287
68 N.Akhmedievand A.Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett. 70(16), 2395(1993)
https://doi.org/10.1103/PhysRevLett.70.2395
69 P. L.Chu, B. A.Malomed, and G. D.Peng, Soliton switching and propagation in nonlinear fiber couplers: Analytical results, J. Opt. Soc. Am. B10(8), 1379(1993)
https://doi.org/10.1364/JOSAB.10.001379
70 J. M.Soto-Crespoand N.Akhmediev, Stability of the soliton states in a nonlinear fiber coupler, Phys. Rev. E48(6), 4710(1993)
https://doi.org/10.1103/PhysRevE.48.4710
71 M.Matuszewski, B. A.Malomed, and M.Trippenbach, Spontaneous symmetry breaking of solitons trapped in a double-channel potential, Phys. Rev. A75(6), 063621(2007)
https://doi.org/10.1103/PhysRevA.75.063621
72 Y. J.Tsofeand B. A.Malomed, Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift, Phys. Rev. E75(5), 056603(2007)
https://doi.org/10.1103/PhysRevE.75.056603
73 S. K.Adhikariand B. A.Malomed, Two-component gap solitons with linear interconversion, Phys. Rev. A79(1), 015602(2009)
https://doi.org/10.1103/PhysRevA.79.015602
74 H.Sakaguchiand B. A.Malomed, Symmetry breaking of solitons in two-component Gross–Pitaevskii equations, Phys. Rev. E83(3), 036608(2011)
https://doi.org/10.1103/PhysRevE.83.036608
75 Y.Li, B. A.Malomed, M.Feng, and J.Zhou, Double symmetry breaking of solitons in one-dimensional virtual photonic crystals, Phys. Rev. A83(5), 053832(2011)
https://doi.org/10.1103/PhysRevA.83.053832
76 I. M.Merhasin, B. A.Malomed, and R.Driben, Transition to miscibility in a binary Bose–Einstein condensate induced by linear coupling, J. Phys. B38(7), 877(2005)
https://doi.org/10.1088/0953-4075/38/7/009
77 G.Herring, P. G.Kevrekidis, B. A.Malomed, R.Carretero-González, and D. J.Frantzeskakis, Symmetry breaking in linearly coupled dynamical lattices, Phys. Rev. E76(6), 066606(2007)
https://doi.org/10.1103/PhysRevE.76.066606
78 Y.Liu, Y.Guan, H.Li,Z.Luo, and Z.Mai, Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dualflip defects, Opt. Commun. 397, 105(2017)
https://doi.org/10.1016/j.optcom.2017.04.013
79 X.Shi, B. A.Malomed, F.Ye, and X.Chen, Symmetric and asymmetric solitons in a nonlocal nonlinear coupler, Phys. Rev. A85(5), 053839(2012)
https://doi.org/10.1103/PhysRevA.85.053839
80 Y.Li, J.Liu, W.Pang, and B. A.Malomed, Symmetry breaking in dipolar matter-wave solitons in dual-core couplers, Phys. Rev. A87(1), 013604(2013)
https://doi.org/10.1103/PhysRevA.87.013604
81 V. A.Brazhnyiand V. V.Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B18(14), 627(2004)
https://doi.org/10.1142/S0217984904007190
82 O.Morschand M.Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179(2006)
https://doi.org/10.1103/RevModPhys.78.179
83 A.Trombettoniand A.Smerzi, Discrete solitons and breathers with dilute Bose–Einstein condensates, Phys. Rev. Lett. 86(11), 2353(2001)
https://doi.org/10.1103/PhysRevLett.86.2353
84 G. L.Alfimov, P. G.Kevrekidis, V. V.Konotop, and M.Salerno, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. E66(4), 046608(2002)
https://doi.org/10.1103/PhysRevE.66.046608
85 R.Carretero-González, and K.Promislow, Nonlinear excitations in arrays of Bose–Einstein condensates, Phys. Rev. A66, 033610(2002)
https://doi.org/10.1103/PhysRevA.66.033610
86 P. G.Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations, and Physical Perspectives, Springer: Berlin and Heidelberg, 2009
https://doi.org/10.1007/978-3-540-89199-4
87 F. K.Abdullaev, B. B.Baizakov, S. A.Darmanyan, V. V.Konotop, and M.Salerno, Nonlinear excitations in arrays of Bose–Einstein condensates, Phys. Rev. A64(4), 043606(2001)
https://doi.org/10.1103/PhysRevA.64.043606
88 Y.Li, W.Pang, J.Xu, C.Lee, B. A.Malomed, and L.Santos, Long-range transverse Ising model built with dipolar condensates in two-well arrays, New J. Phys. 19(1), 013030(2017)
https://doi.org/10.1088/1367-2630/aa58b3
89 M. L.Chiofalo,S.Succi, and M. P.Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E62(5), 7438(2000)
https://doi.org/10.1103/PhysRevE.62.7438
90 J.Yangand T. I.Lakoba, Accelerated imaginarytime evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265(2008)
https://doi.org/10.1111/j.1467-9590.2008.00398.x
91 J.Yangand T. I.Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math. 118(2), 153(2007)
92 G.Ioossand D. D.Joseph, Elementary Stability Bifurcation Theory, New York: Springer, 1980
93 Y.Li, W.Pang, S.Fu, and B. A.Malomed, Twocomponent solitons with a spatially modulated linear coupling: Inverted photonic crystals and fused couplers, Phys. Rev. A85(5), 053821(2012)
https://doi.org/10.1103/PhysRevA.85.053821
94 M.Vakhitovand A.Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783(1973)
https://doi.org/10.1007/BF01031343
95 L.Bergé, Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259(1998)
96 E. A.Kuznetsovand F.Dias, Bifurcations of solitons and their stability, Phys. Rep. 507(2–3), 43(2011)
https://doi.org/10.1016/j.physrep.2011.06.002
97 S.Inouye, M. R.Andrews, J.Stenger, H. J.Miesner, D. M.Stamper-Kurn, and W.Ketterle, Observation of Feshbach resonances in a Bose–Einstein condensate, Nature392(6672), 151(1998)
https://doi.org/10.1038/32354
98 Z.Chen, J.Liu, S.Fu, Y.Li, and B. A.Malomed, Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers, Opt. Express22(24), 29679 (2014)
https://doi.org/10.1364/OE.22.029679
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed