Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 137203   https://doi.org/10.1007/s11467-017-0744-0
  本期目录
Electron drift velocity and mobility in graphene
Hai-Ming Dong1, Yi-Feng Duan1(), Fei Huang2,3(), Jin-Long Liu3
1. School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2. Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116, China
3. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
 全文: PDF(258 KB)  
Abstract

We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

Key wordsgraphene    mobility    nano-electronic devices
收稿日期: 2017-07-26      出版日期: 2018-04-23
Corresponding Author(s): Yi-Feng Duan,Fei Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 137203.
Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene. Front. Phys. , 2018, 13(2): 137203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0744-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/137203
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
3 K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)
https://doi.org/10.1103/PhysRevLett.101.096802
4 F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)
https://doi.org/10.1021/nl9039636
5 G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)
https://doi.org/10.1063/1.3180707
6 L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)
https://doi.org/10.1103/PhysRevLett.100.116804
7 Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)
https://doi.org/10.1021/nl803316h
8 Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)
https://doi.org/10.1007/s11671-010-9561-x
9 T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)
https://doi.org/10.1140/epjst/e2007-00222-8
10 I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
https://doi.org/10.1038/nnano.2008.268
11 A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)
https://doi.org/10.1103/PhysRevLett.103.076601
12 J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)
https://doi.org/10.1038/nnano.2008.58
13 X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)
https://doi.org/10.1103/PhysRevB.75.033408
14 X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000
15 X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor,J. Appl. Phys. 105(10), 104514 (2009)
https://doi.org/10.1063/1.3130400
16 W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)
https://doi.org/10.1103/PhysRevB.79.073403
17 H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)
https://doi.org/10.1103/PhysRevB.77.235402
18 T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)
https://doi.org/10.1103/PhysRevB.76.205423
19 W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)
https://doi.org/10.1103/PhysRevLett.99.236802
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed