Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13501   https://doi.org/10.1007/s11467-018-0852-5
  本期目录
Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2
Dong-Dong Wang1, Bin Liu1(), Min Liu2, Yi-Feng Yang2,3,4(), Shi-Ping Feng5
1. Department of Physics, Beijing Jiaotong University, Beijing 100044, China
2. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
5. Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(3169 KB)  
Abstract

The notion of multiband superconductivity with dominant two-gap features has been recently applied to the unconventional superconductor CeCu2Si2 for challenging the previously accepted concept of nodal d-wave pairing. In the proposed study, the realistic multiband Fermi surface topology of CeCu2Si2 was obtained through first-principles calculations, and analysis was conducted with an effective two-band hybridization model including detailed band structure. Within the T-matrix approximation, the obtained calculation results show that different pairing candidates, including fully gapped s-wave, loop-nodal s-wave, and d-wave pairings, could yield qualitatively distinct features characterized by impurity-induced bound states. These features can be verified through high-resolution scanning tunneling microscopy or spectroscopy and provide corroborative justification that would be beneficial for the ongoing research regarding the superconducting gap symmetry of CeCu2Si2 at ambient pressure.

Key wordsheavy-fermion superconductivity    pairing symmetry    impurity effect    local density of states
收稿日期: 2018-07-25      出版日期: 2019-01-01
Corresponding Author(s): Bin Liu,Yi-Feng Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13501.
Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2. Front. Phys. , 2019, 14(1): 13501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0852-5
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13501
1 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)
https://doi.org/10.1103/PhysRevLett.43.1892
2 H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302(5653), 2104 (2003)
https://doi.org/10.1126/science.1091648
3 F. Steglich, Twenty-five years of heavy-fermion superconductivity, Physica B359–361, 326 (2005)
https://doi.org/10.1016/j.physb.2005.01.054
4 C. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, Gapless superconductivity and variation of Tcin the heavy-fermion system CeCu2Si2, J. Magn. Magn. Mater. 31–34, 373 (1983)
https://doi.org/10.1016/0304-8853(83)90286-X
5 J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H. S. Jeevan, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich, Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point, Phys. Rev. Lett. 106(24), 246401 (2011)
https://doi.org/10.1103/PhysRevLett.106.246401
6 K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara, and K. Asayama, 29Si knight shift in the heavy-fermion superconductor CeCu2Si2, J. Phys. Soc. Jpn. 56(3), 867 (1987)
https://doi.org/10.1143/JPSJ.56.867
7 Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, NMR investigation of superconductivity and Kondo-coherency in CeCu2Si2, J. Phys. Soc. Jpn. 55(3), 723 (1986)
https://doi.org/10.1143/JPSJ.55.723
8 K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77(12), 123711 (2008)
https://doi.org/10.1143/JPSJ.77.123711
9 O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nat. Phys. 7(2), 119 (2011)
10 H. A. Vieyra, N. Oeschler, S. Seiro, H. S. Jeevan, C. Geibel, D. Parker, and F. Steglich, Determination of gap symmetry from angle-dependent Hc2 measurements on CeCu2Si2, Phys. Rev. Lett. 106(20), 207001 (2011)
https://doi.org/10.1103/PhysRevLett.106.207001
11 I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101(18), 187001 (2008)
https://doi.org/10.1103/PhysRevLett.101.187001
12 S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112(6), 067002 (2014)
https://doi.org/10.1103/PhysRevLett.112.067002
13 S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, Y. Tsutsumi, H. Ikeda, and K. Machida, Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavyfermion superconductor CeCu2Si2, Phys. Rev. B 94(5), 054514 (2016)
https://doi.org/10.1103/PhysRevB.94.054514
14 M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B 93(4), 045123 (2016)
https://doi.org/10.1103/PhysRevB.93.045123
15 G. M. Pang, M. Smidman, J. L. Zhang, L. Jiao, Z. F. Weng, E. M. Nica, Y. Chen, W. B. Jiang, Y. J. Zhang, H. S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H. Q. Yuan, Fully gapped d-wave superconductivity in CeCu2Si2, Proc. Nat. Acad. Sci. 115, 5343 (2018), arXiv: 1605.04786
16 T. Takenaka, Y. Mizukami, J. A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Full-gap superconductivity robust against disorder in heavy-fermion CeCu2Si2, Phys. Rev. Lett. 119(7), 077001 (2017)
https://doi.org/10.1103/PhysRevLett.119.077001
17 Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y. F. Yang, Gap symmetry of the heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120(21), 217001 (2018)
https://doi.org/10.1103/PhysRevLett.120.217001
18 H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s±-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114(14), 147003 (2015)
https://doi.org/10.1103/PhysRevLett.114.147003
19 Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)
https://doi.org/10.1103/RevModPhys.79.353
20 G. Knebel, D. Aoki, and J. Flouquet, Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds,C. R. Phys. 12(5–6), 542 (2011)
https://doi.org/10.1016/j.crhy.2011.05.002
21 G. Stewart, Non-Fermi-liquid behavior in d- and felectron metals, Rev. Mod. Phys. 73(4), 797 (2001)
https://doi.org/10.1103/RevModPhys.73.797
22 G. R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)
https://doi.org/10.1103/RevModPhys.56.755
23 P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486(7402), 201 (2012)
https://doi.org/10.1038/nature11204
24 M. P. Allan, F. Massee, D. K. Morr, J. van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)
25 B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)
26 B. Liu, Nonmagnetic impurity resonance states as a test of superconducting pairing symmetry in CeCoIn5, Phys. Rev. B 88(24), 245127 (2013)
https://doi.org/10.1103/PhysRevB.88.245127
27 G. Zhang, B. Liu, Y. Yang, and S. Feng, Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5, Front. Phys. 11(3), 117402 (2016)
https://doi.org/10.1007/s11467-016-0549-6
28 G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band structure, quasiparticles and co-operative phenomena, Physica B186–188, 895 (1993)
https://doi.org/10.1016/0921-4526(93)90736-P
29 A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
https://doi.org/10.1103/RevModPhys.78.373
30 S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+d, Nature 403(6771), 746 (2000)
https://doi.org/10.1038/35001534
31 S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Microscopic electronic inhomogeneity in the high-Tcsuperconductor Bi2Sr2CaCu2O8+x, Nature 413(6853), 282 (2001)
https://doi.org/10.1038/35095012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed