Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13604   https://doi.org/10.1007/s11467-018-0860-5
  本期目录
Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3
Ling-Ling Wang1, Jia-Nan Chu1,2,3, Xuan Zhang1,4, Yong-Hui Ma1,2,3, Qiu-Cheng Ji1,2, Wei Li5, Hui Zhang1,2, Gang Mu1,2(), Xiao-Ming Xie1,2,3
1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2. CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
5. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
 全文: PDF(4094 KB)  
Abstract

Synthesis, structure and magnetic properties of Ru doped perovskite structured manganite La0.5Sr0.5MnO3 were investigated experimentally. A hydrothermal method was used for the preparation of the samples. A high-temperature annealing process was also employed to make a comparison. A slightly enhancement of the unit cell volume was observed with the increase of Ru concentration. Scanning electron microscopy shows that the materials are made up of cube-shaped particles with dimension of several micrometers. Importantly, it is found that both the Curie temperature TC and saturation moment can be reduced by Ru doping. The value of coercive field is not affected by the introduction of Ru.

Key wordsLa0.5Sr0.5MnO3    hydrothermal synthesis    Ru doping    Curie temperature
收稿日期: 2018-06-01      出版日期: 2019-01-01
Corresponding Author(s): Gang Mu   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13604.
Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3. Front. Phys. , 2019, 14(1): 13604.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0860-5
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13604
1 J. G. Bednorz and K. A. Mäuller, Possible high TCsuperconductivity in the Ba-La-Cu-O system,Z. Phys. B 64, 189 (1986)
https://doi.org/10.1007/BF01303701
2 R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71(14), 2331 (1993)
https://doi.org/10.1103/PhysRevLett.71.2331
3 K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure, Appl. Phys. Lett. 63(14), 1990 (1993)
https://doi.org/10.1063/1.110624
4 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Thousandfold change in re-sistivity in magnetoresistive La-Ca-Mn-O Films, Science 264(5157), 413 (1994)
https://doi.org/10.1126/science.264.5157.413
5 M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillips, and R. Ramesh, Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films, Appl. Phys. Lett. 64(22), 3045 (1994)
https://doi.org/10.1063/1.111372
6 P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1–xCaxMnO3, Phys. Rev. Lett. 75(18), 3336 (1995)
https://doi.org/10.1103/PhysRevLett.75.3336
7 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3, Phys. Rev. B 51(20), 14103 (1995)
https://doi.org/10.1103/PhysRevB.51.14103
8 A. Sundaresan, P. L. Paulose, R. Mallik, and E. V. Sampathkumaran, Bandwidth-controlled magnetic and electronic transitions in La0.5Ca0.5–xSrxMnO3 (0<~x<~0.5) distorted perovskite, Phys. Rev. B 57(5), 2690 (1998)
https://doi.org/10.1103/PhysRevB.57.2690
9 O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Structural and magnetic phase diagrams of La1–xSrxMnO3 and Pr1–ySryMnO3, Phys. Rev. B 67(9), 094431 (2003)
https://doi.org/10.1103/PhysRevB.67.094431
10 C. Autret-Lambert, M. Gervais, S. Roger, F. Gervais, M. Lethiecq, N. Raimboux, and P. Simon, Inhomogeneous magnetism studied by ESR in La1–xSrxMnO3 (0.45≤x≤0.62), Solid State Sci. 71, 139 (2017)
https://doi.org/10.1016/j.solidstatesciences.2017.06.017
11 A. Maignan, C. Martin, and B. Raveau, Substitution of manganese by trivalent and tetravalent elements in the CMR perovskites Pr1–x(Ca, Sr)xMnO3, Z. Phys. B 102, 19 (1996)
https://doi.org/10.1007/s002570050260
12 K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, and S. I. Patil, Transition-element doping effects in La0.7Ca0.3MnO3, Phys. Rev. B 59(1), 533 (1999)
https://doi.org/10.1103/PhysRevB.59.533
13 M. Rubinstein, D. J. Gillespie, J. E. Snyder, and T. M. Tritt, Effects of Gd, Co, and Ni doping in La2/3Ca1/3MnO3: Resistivity, thermopower, and paramagnetic resonance, Phys. Rev. B 56(9), 5412 (1997)
https://doi.org/10.1103/PhysRevB.56.5412
14 Y. Sun, X. Xu, L. Zheng, and Y. Zhang, Effects of Ga doping in the colossal magnetoresistance material La0.67Ca0.33MnO3, Phys. Rev. B 60(17), 12317 (1999)
https://doi.org/10.1103/PhysRevB.60.12317
15 R. K. Sahu and S. S. Manoharan, A Zener pair effect in lanthanum rutheno manganite, J. Appl. Phys. 91(10), 7517 (2002)
https://doi.org/10.1063/1.1447290
16 L. M. Wang, J. H. Lai, J. I. Wu, Y. K. Kuo, and C. L. Chang, Effects of Ru substitution for Mn on La0.7Sr0.3MnO3 perovskites, J. Appl. Phys. 102(2), 023915 (2007)
https://doi.org/10.1063/1.2761690
17 N. Zaidi, S. Mnefgui, J. Dhahri, and E. K. Hlil, Effect of Ru substitution on the physical properties of La0.6Pr0.1Sr0.3Mn1–xRuxO3 (x= 0.00, 0.05 and 0.15) perovskites, RSC Adv. 5, 31901 (2015)
https://doi.org/10.1039/C5RA00389J
18 Y. Ying, J. Fan, L. Pi, Z. Qu, W. Wang, B. Hong, S. Tan, and Y. Zhang, Effect of Ru doping in La0.5Sr0.5MnO3 and La0.45Sr0.55MnO3, Phys. Rev. B 74(14), 144433 (2006)
https://doi.org/10.1103/PhysRevB.74.144433
19 M. M. Saber, M. Egilmez, A. I. Mansour, I. Fan, K. H. Chow, and J. Jung, Evolution of Curie-Weiss behavior and cluster formation temperatures in Ru-doped Sm0.55Sr0.45MnO3 manganites, Phys. Rev. B 82(17), 172401 (2010)
https://doi.org/10.1103/PhysRevB.82.172401
20 I. Dhiman, A. Das, A. K. Nigam, and U. Gasser, Influence of B-site disorder in La0.5Ca0.5Mn1–xBxO3 (B= Fe, Ru, Al and Ga) manganites, J. Phys.: Condens. Matter 23(24), 246006 (2011)
https://doi.org/10.1088/0953-8984/23/24/246006
21 Y. Ying, J. Zheng, L. Qiao, W. Li, W. Cai, S. Che, L. Jiang, J. Fan, and M. Lin, Double exchange interaction between Mn3+ and Ru4+ ions in La1–xSrxMn1–xRuxO3, J. Superconduct. Novel Magnet. 28(10), 3117 (2015)
https://doi.org/10.1007/s10948-015-3146-y
22 D. Zhu, H. Zhu, and Y. Zhang, Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method, J. Cryst. Growth 249(1–2), 172 (2003)
https://doi.org/10.1016/S0022-0248(02)02064-X
23 J. Spooren, R. I. Walton, and F. Millange, A study of the manganites La0.5M0.5MnO3 (M= Ca, Sr, Ba) prepared by hydrothermal synthesis, J. Mater. Chem. 15(15), 1542 (2005)
https://doi.org/10.1039/b417003b
24 Y. Cheng, J. Dai, X. Zhu, D. Wu, and Y. Sun, Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites, Mater. Res. Bull. 45(6), 663 (2010)
https://doi.org/10.1016/j.materresbull.2010.03.007
25 B. Tang, J. Ge, and L. Zhuo, The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent, Nanotechnology 15(12), 1749 (2004)
https://doi.org/10.1088/0957-4484/15/12/008
26 C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)
https://doi.org/10.1107/S0021889899003039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed