Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (3): 294-308   https://doi.org/10.1007/s11467-011-0163-6
  REVIEW ARTICLE 本期目录
Quantum simulation of molecular interaction and dynamics at surfaces
Quantum simulation of molecular interaction and dynamics at surfaces
Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜,)
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(591 KB)   HTML
Abstract

The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronics, and solar cells. Surprisingly, a full understanding of molecule–surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron–ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule–surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.

Key wordsadsorption    quantum simulation    density functional theory    electronic structure    electron dynamics
收稿日期: 2010-11-23      出版日期: 2011-09-05
Corresponding Author(s): MENG (孟胜) Sheng,Email:smeng@iphy.ac.cn   
 引用本文:   
. Quantum simulation of molecular interaction and dynamics at surfaces[J]. Frontiers of Physics, 2011, 6(3): 294-308.
Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces. Front. Phys. , 2011, 6(3): 294-308.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0163-6
https://academic.hep.com.cn/fop/CN/Y2011/V6/I3/294
1 M. Gr?tzel, Acc. Chem. Res. , 2009, 42: 1788
doi: 10.1021/ar900141y
2 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics , 2009, 3: 297
doi: 10.1038/nphoton.2009.69
3 For example, the very popular TIP3P model of water produces an OO distance of 2.75 ? and hydrogen bond angles of -4° and 158° in a water dimer, which are different from the corresponding values in first-principles calculations (2.95 ?, 5°, 125°) and experiment (2.98 ?, -1°, 123°). See S. Meng, Chapter 3, . dissertation, Graduatue School of Chinese Academy of Sciences, Beijing , 2004
4 S. Meng, L. F. Xu, E. G. Wang, and S. W. Gao, Phys. Rev. Lett. , 2002, 89: 176104
doi: 10.1103/PhysRevLett.89.176104
5 S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B , 2004, 69: 195404
doi: 10.1103/PhysRevB.69.195404
6 S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. W. Gao, Chem. Phys. Lett. , 2005, 402: 384
doi: 10.1016/j.cplett.2004.12.065
7 J. Ren and S. Meng, J. Am. Chem. Soc. , 2006, 128: 9282
doi: 10.1021/ja061947p
8 J. Ren and S. Meng, Phys. Rev. B , 2008, 77: 054110
doi: 10.1103/PhysRevB.77.054110
9 P. J. Feibelman, Science , 2002, 295: 99
doi: 10.1126/science.1065483
10 J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater. , 2009, 8: 427
doi: 10.1038/nmat2403
11 S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Nano Lett. , 2007, 7, 45
doi: 10.1021/nl0619103
12 S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Nano Lett. , 2007, 7: 2312
doi: 10.1021/nl070953w
13 S. Meng, J. Ren, and E. Kaxiras, Nano Lett. , 2008, 8: 3266
doi: 10.1021/nl801644d
14 S. Meng and E. Kaxiras, Nano Lett. , 2010, 10: 1238
doi: 10.1021/nl100442e
15 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter , 2002, 14: 2745
doi: 10.1088/0953-8984/14/11/302
16 P. Hohenberg and W. Kohn, Phys. Rev. B , 1964, 136: 864
doi: 10.1103/PhysRev.136.B864
17 W. Kohn and L. J. Sham, Phys. Rev. A , 1965, 140: 1133
doi: 10.1103/PhysRev.140.A1133
18 G. Kresse and J. Furthmüller, Phys. Rev. B , 1996, 54: 11169
doi: 10.1103/PhysRevB.54.11169
19 P. E. Bl?chl, Phys. Rev. B , 1994, 50: 17953
doi: 10.1103/PhysRevB.50.17953
20 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. , 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
21 D. R. Hamann, Phys. Rev. B , 1997, 55: 10157
doi: 10.1103/PhysRevB.55.R10157
22 S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. , 1999, 75: 889
doi: 10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
23 N. Troullier and J. L. Martins, Phys. Rev. B , 1991, 43: 1993
doi: 10.1103/PhysRevB.43.1993
24 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. , 1980, 45: 566
doi: 10.1103/PhysRevLett.45.566
25 M. Dion, H. Rydberg, E. Schr?der, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. , 2004, 92: 246401
doi: 10.1103/PhysRevLett.92.246401
26 J. Ren, E. Kaxiras, and S. Meng, Mole. Phys. , 2010, 108: 1829
doi: 10.1080/00268976.2010.491489
27 E. Runge and E. K. U. Gross, Phys. Rev. Lett. , 1984, 52: 997
doi: 10.1103/PhysRevLett.52.997
28 S. Meng and E. Kaxiras, J. Chem. Phys. , 2008, 129: 054110
doi: 10.1063/1.2960628
29 P. A. Thiel and T. E. Madey, Surf. Sci. Rep. , 1987, 7: 211
doi: 10.1016/0167-5729(87)90001-X
30 A. Hodgson and S. Haq, Surf. Sci. Rep. , 2009, 64: 381
doi: 10.1016/j.surfrep.2009.07.001
31 G. Held and D. Menzel, Surf. Sci. , 1994, 316: 92
doi: 10.1016/0039-6028(94)91131-2
32 D. N. Denzler, C. Hess, R. Dudek, S. Wagner, C. Frischkorn, M. Wolf, and G. Ertl, Chem. Phys. Lett. , 2003, 376: 618
doi: 10.1016/S0009-2614(03)01016-9
33 K. Jacobi, K. Bedurftig, Y. Wang, and G. Ertl, Surf. Sci. , 2001, 472: 9
doi: 10.1016/S0039-6028(00)00932-8
34 H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. , 2002, 89: 276102
doi: 10.1103/PhysRevLett.89.276102
35 S. Meng, L. F. Xu, E. G. Wang, S. W. Gao, Phys. Rev. Lett. , 2003, 91: 059602
doi: 10.1103/PhysRevLett.91.059602
36 S. Meng, Surf. Sci. , 2005, 575: 300
doi: 10.1016/j.susc.2004.11.036
37 A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, J. Chem. Phys. , 1997, 106: 9382
doi: 10.1063/1.474008
38 S. Haq, J. Harnett, and A. Hodgson, Surf. Sci. , 2002, 505: 171
doi: 10.1016/S0039-6028(02)01152-4
39 S. Nie, P. J. Feibelman, N. C. Bartelt, and K. Thürmer, Phys. Rev. Lett. , 2010, 105: 026102
doi: 10.1103/PhysRevLett.105.026102
40 T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. ?str?m, K. Andersson, L. G. M. Pettersson, A. Hodgson, and A. Nilsson, Chem. Phys. Lett. , 2006, 429: 415
doi: 10.1016/j.cplett.2006.08.048
41 G. Held and D. Menzel, Phys. Rev. Lett. , 1995, 74: 4221
doi: 10.1103/PhysRevLett.74.4221
42 M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. , 1996, 77: 703
doi: 10.1103/PhysRevLett.77.703
43 T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett. , 2006, 96: 036105
doi: 10.1103/PhysRevLett.96.036105
44 J. J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett. , 2004, 92: 146102
doi: 10.1103/PhysRevLett.92.146102
45 Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B , 2006, 74: 245409
doi: 10.1103/PhysRevB.74.245409
46 J. Lee, D. C. Sorescu, K. D. Jordan, and J. T. Yates, J. Phys. Chem. C , 2008, 112: 17672
doi: 10.1021/jp807467x
47 T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science , 2002, 297: 1850
doi: 10.1126/science.1075095
48 V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett. , 2004, 92: 136104
doi: 10.1103/PhysRevLett.92.136104
49 S. Meng, E. G. Wang, and S. W. Gao, J. Chem. Phys. , 2003, 119: 7617
doi: 10.1063/1.1617974
50 K. Morgenstern and J. Nieminen, Phys. Rev. Lett. , 2002, 88: 066102
doi: 10.1103/PhysRevLett.88.066102
51 A. Michaelides and K. Morgenstern, Nat. Mater. , 2007, 6: 597
doi: 10.1038/nmat1940
52 S. Meng, E. Kaxiras, and Z. Y. Zhang, J. Chem. Phys. , 2007, 127: 244710
doi: 10.1063/1.2804871
53 M. E. Tuckerman, D. Marx, and M. Parrinello, Nature , 2002, 417: 925
doi: 10.1038/nature00797
54 J. E. Gunn and B. A. Peterson, Astrophys. J. , 1965, 142: 1633
doi: 10.1086/148444
55 D. Marx, M. E. Tuckerman, J. Hütter, and M. Parrinello, Nature , 1999, 397: 601
doi: 10.1038/17579
56 K. Andersson, A. Nikitin, L. G. M. Pettersson, A. Nilsson, and H. Ogasawara, Phys. Rev. Lett. , 2004, 93: 196101
doi: 10.1103/PhysRevLett.93.196101
57 C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett. , 2004, 388: 89
doi: 10.1016/j.cplett.2004.02.076
58 X. Z. Li, M. I. J. Probert, A. Alavi, and A. Michaelides, Phys. Rev. Lett. , 2010, 104: 066102
doi: 10.1103/PhysRevLett.104.066102
59 R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. , 1996, 367: L13
doi: 10.1016/S0039-6028(96)00943-0
60 P. L?fgren, P. Ahlstr?m, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci. , 1996, 367: L19
doi: 10.1016/S0039-6028(96)00944-2
61 S. Meng, Z. Zhang, and E. Kaxiras, Phys. Rev. Lett. , 2006, 97: 036107
doi: 10.1103/PhysRevLett.97.036107
62 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater. , 2003, 2: 338
doi: 10.1038/nmat877
63 M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science , 2003, 302: 1545
doi: 10.1126/science.1091911
64 B. Gigliotti, B. Sakizzie, D. S. Bethune, R. M. Shelby, and J. N. Cha, Nano Lett. , 2006, 6: 159
doi: 10.1021/nl0518775
65 D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano, Science , 2006, 311: 508
doi: 10.1126/science.1120792
66 Y. Xu, P. E. Pehrsson, L. Chen, R. Zhang, and W. Zhao, J. Phys. Chem. C , 2007, 111: 8638
doi: 10.1021/jp0709611
67 G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Y. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mole. Phys. , 2006, 104: 3193
doi: 10.1080/00268970601061220
68 H. J. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett. , 2003, 3: 471
doi: 10.1021/nl025967a
69 H. J. Gao and Y. Kong, Annu. Rev. Mater. Res. , 2004, 34: 123
doi: 10.1146/annurev.matsci.34.040203.120402
70 T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji, Chem. Phys. Lett. , 2006, 417: 288
doi: 10.1016/j.cplett.2005.10.030
71 J. D. Watson and F. H. C. Crick, Nature , 1953, 171: 737
doi: 10.1038/171737a0
72 S. Iijima, Nature , 1991, 354: 56
doi: 10.1038/354056a0
73 J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett. , 2003, 3: 597
doi: 10.1021/nl0340677
74 N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew. Chem. Int. Ed. , 2006, 45: 577
doi: 10.1002/anie.200503389
75 C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, Nano Lett. , 2005, 5: 1774
doi: 10.1021/nl051261f
76 G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett. , 2005, 5: 897
doi: 10.1021/nl050354u
77 A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, Proc. Natl. Acad. Sci. USA , 2006, 103: 921
doi: 10.1073/pnas.0504146103
78 E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett. , 2006, 6: 371
doi: 10.1021/nl051829k
79 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem. , 1983, 4: 187
doi: 10.1002/jcc.540040211
80 A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B , 1998, 102: 3586
81 S. V. Krivov, S. F. Chekmarev, and M. Karplus, Phys. Rev. Lett. , 2002, 88: 038101
doi: 10.1103/PhysRevLett.88.038101
82 R. Elber and M. Karplus, Science , 1987, 235: 318
doi: 10.1126/science.3798113
83 D. J. Wales and H. A. Scheraga, Science , 1999, 285: 1368
doi: 10.1126/science.285.5432.1368
84 D. J. Wales, Science , 2001, 293: 2067
doi: 10.1126/science.1062565
85 F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. , 2005, 95: 186101
doi: 10.1103/PhysRevLett.95.186101
86 J. E. Freund, , Ludwig–Mmaximilians Universit?t München, 1998
87 A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology , 2007, 18: 245702
doi: 10.1088/0957-4484/18/24/245702
88 C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett. , 2007, 439: 138
doi: 10.1016/j.cplett.2007.03.085
89 M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. , 2005, 94: 236102
doi: 10.1103/PhysRevLett.94.236102
90 J. Tersoff and D. R. Hamann, Phys. Rev. B , 1985, 31: 805
doi: 10.1103/PhysRevB.31.805
91 M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett. , 2007, 7: 1191
doi: 10.1021/nl062906u
92 Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett. , 2005, 94: 087402
doi: 10.1103/PhysRevLett.94.087402
93 J. Rajendra and A. Rodger, Chem. Eur. J. , 2005, 11: 4841
doi: 10.1002/chem.200500093
94 J. Schnadt, P. A. Bruhwiler, L. Patthey, J. N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature , 2002, 418: 620
doi: 10.1038/nature00952
95 S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc. , 2005, 127: 3456
doi: 10.1021/ja0460357
96 J. B. Asbury, E. Hao, Y. Wang, and T. Lian, J. Phys. Chem. B , 2000, 104: 11957
doi: 10.1021/jp002541g
97 C. W. Chang, L. Luo, C. K. Chou, C. F. Lo, C. Y. Lin, C. S. Hung, Y. P. Lee, and E. W. Diau, J. Phys. Chem. C , 2009, 113: 11524
doi: 10.1021/jp810580u
98 L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater. , 2010, 9: 741
doi: 10.1038/nmat2806
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed