Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2009, Vol. 4 Issue (3): 373-377   https://doi.org/10.1007/s11467-009-0027-5
  本期目录
Chiral selective tunneling induced graphene nanoribbon switch
Chiral selective tunneling induced graphene nanoribbon switch
Qin-wei SHI (石勤伟), Zheng-fei WANG (王征飞), Qun-xiang LI (李群祥), Jin-long YANG (杨金龙,)
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(590 KB)   HTML
Abstract

An armchair graphene nanoribbon switch has been designed based on the principle of the Klein paradox. The resulting switch displays an excellent on–off ratio performance. An anomalous tunneling phenomenon, in which electrons do not pass through the graphene nanoribbon junction even when the conventional resonance condition is satisfied, is observed in our numerical simulations. A selective tunneling rule is proposed to explain this interesting transport behavior based on our analytical results. Based on this selective rule, our switch design can also achieve the confinement of an electron to form a quantum qubit.

Key wordsswitch    Klein paradox    graphene nanoribbon    selective tunneling
收稿日期: 2009-02-16      出版日期: 2009-09-05
Corresponding Author(s): null,Email:jlyang@ustc.edu.cn   
 引用本文:   
. Chiral selective tunneling induced graphene nanoribbon switch[J]. Frontiers of Physics, 2009, 4(3): 373-377.
Qin-wei SHI (石勤伟), Zheng-fei WANG (王征飞), Qun-xiang LI (李群祥), Jin-long YANG (杨金龙). Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. , 2009, 4(3): 373-377.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0027-5
https://academic.hep.com.cn/fop/CN/Y2009/V4/I3/373
1 K. S. Novoselov, A. K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306: 666
doi: 10.1126/science.1102896
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) , 2005, 438: 197
doi: 10.1038/nature04233
3 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) , 2005, 438: 201
doi: 10.1038/nature04235
4 C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, A. H. Conrad, P. N. First, and W. A. de Heer, Science , 2006, 312: 1191
doi: 10.1126/science.1125925
5 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science , 2006, 313: 951
doi: 10.1126/science.1130681
6 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London) , 2006, 442: 282
doi: 10.1038/nature04969
7 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. , 2006, 2: 620
doi: 10.1038/nphys384
8 O. Klein, Z. Phys. , 1927, 53: 157
9 K. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn. , 2006, 75: 074713
doi: 10.1143/JPSJ.75.074713
10 K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B , 1996, 54: 17954
doi: 10.1103/PhysRevB.54.17954
11 M. R. Diehl, D. W. Steuerman, H. Tseng, S. A. Vignon, A. Star, P. C. Celestre, J. F. Stoddart, and J. R. Heath, Chem PhysChem , 2003, 4: 1335
doi: 10.1002/cphc.200300871
12 A. N. Andriotis, M. Menon, D. Srivastava, and L. Chernozatonskii, Phys. Rev. Lett. , 2001, 87: 066802
doi: 10.1103/PhysRevLett.87.066802
13 V. Barone, O. Hod, and G. Scuseria, Nano Lett. , 2006, 6: 2748
doi: 10.1021/nl0617033
14 Y. W. Son, M. L. Cohen, and S. G. Louie, Nature (London) , 2006, 444: 347
doi: 10.1038/nature05180
15 Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2006, 97: 216803
doi: 10.1103/PhysRevLett.97.216803
16 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. , 1996, 65: 1920
doi: 10.1143/JPSJ.65.1920
17 K. Wakabayashi, Phys. Rev. B , 2001, 64: 125428
doi: 10.1103/PhysRevB.64.125428
18 J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett. , 2006, 96: 246802
doi: 10.1103/PhysRevLett.96.246802
19 Z. F. Wang, Q. X. Li, H. X. Zheng, H. Ren, H. B. Su, Q. W. Shi, and J. Chen, Phys. Rev. B , 2007, 75: 113406
doi: 10.1103/PhysRevB.75.113406
20 R. Landauer, Philos. Mag. , 1970, 21: 863
doi: 10.1080/14786437008238472
21 J. Zhang, Q. W. Shi, and J. L. Yang, J. Chem. Phys. , 2004, 120: 7733
doi: 10.1063/1.1689638
22 S. Datta, Electronic Transport in Mesoscopic Systems, New York: Cambridge University Press, 1995
23 C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon , 2006, 44: 508
doi: 10.1016/j.carbon.2005.08.009
24 H. X. Zheng, Z. F. Wang, T. Luo, Q. W. Shi, and J. Chen, Phys. Rev. B , 2007, 75: 165414
doi: 10.1103/PhysRevB.75.165414
25 K. Wakabayashi and M. Sigrist, Phys. Rev. Lett. , 2000, 84: 3390
doi: 10.1103/PhysRevLett.84.3390
26 Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys. Rev. Lett. , 2008, 100: 206802
doi: 10.1103/PhysRevLett.100.206802
27 D. Huertas-Hernando, F. Guinea, and A. Brataas, Eur. Phys. J. Special Topics , 2007, 148: 177
doi: 10.1140/epjst/e2007-00238-0
28 B. Trauzette, D. V. Bulaev, D. Loss, and G. Burkard, Nature Phys. , 2007, 3: 192
doi: 10.1038/nphys544
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed