Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (1): 54-71    DOI: 10.1007/s11467-011-0211-2
  REVIEW ARTICLE 本期目录 |  
Theory of superfluidity and drag force in the one-dimensional Bose gas
Theory of superfluidity and drag force in the one-dimensional Bose gas
Alexander Yu. Cherny1, Jean-Sébastien Caux2, Joachim Brand3()
1. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; 2. Institute for Theoretical Physics, Science Park 904, University of Amsterdam, 1090 GL Amsterdam, The Netherlands; 3. Centre for Theoretical Chemistry and Physics and New Zealand Institute for Advanced Study, Massey University, Private Bag 102904 North Shore, Auckland 0745, New Zealand
全文: PDF(703 KB)   HTML
Abstract

The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quantitative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Landau’s criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid–insulator transition in these systems.

Key wordsLieb–Liniger model    Tonks–Girardeau gas    Luttinger liquid    drag force    superfluidity    dynamical structure factor
收稿日期: 2011-06-30      出版日期: 2012-02-01
引用本文:   
. Theory of superfluidity and drag force in the one-dimensional Bose gas[J]. Frontiers of Physics, 2012, 7(1): 54-71.
Alexander Yu. Cherny, Jean-Sébastien Caux, Joachim Brand. Theory of superfluidity and drag force in the one-dimensional Bose gas. Front. Phys. , 2012, 7(1): 54-71.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0211-2      或      http://academic.hep.com.cn/fop/CN/Y2012/V7/I1/54
1 J. Leggett, Rev. Mod. Phys. , 1999, 71(2): S318
doi: 10.1103/RevModPhys.71.S318
2 A. J. Leggett, Rev. Mod. Phys. , 2001, 73(2): 307
doi: 10.1103/RevModPhys.73.307
3 é. B. Sonin, Sov. Phys. Usp. , 1982, 25: 409
doi: 10.1070/PU1982v025n06ABEH004564
4 P. Nozières and D. Pines, The Theory of Quantum Liquids: Superfluid Bose Liquids, Redwood City: Addison-Wesley, 1990
5 L. Pitaevskii and S. Stringari, Bose–Einstein Condensation , Oxford: Clarendon, 2003
6 A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, Oxford: Oxford University Press, 2006
7 N. N. Bogoliubov, Quasi-Expectation Values in Problems of Statistical Machanics, New York: Gordon and Breach, 1961
8 P. C. Hohenberg, Phys. Rev. , 1967, 158(2): 383
doi: 10.1103/PhysRev.158.383
9 G. B. Hess and W. M. Fairbank, Phys. Rev. Lett. , 1967, 19: 216
doi: 10.1103/PhysRevLett.19.216
10 A. J. Leggett, Phys. Fenn. , 1973, 8: 125
11 A. G. Sykes, M. J. Davis, and D. C. Roberts, Phys. Rev. Lett. , 2009, 103(8): 085302
doi: 10.1103/PhysRevLett.103.085302
12 S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Phys. Rev. Lett. , 2005, 95(14): 143201
doi: 10.1103/PhysRevLett.95.143201
13 C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. , 2007, 99(26): 260401
doi: 10.1103/PhysRevLett.99.260401
14 S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, Phys. Rev. A , 2007, 76(6): 061404
doi: 10.1103/PhysRevA.76.061404
15 S. Palzer, C. Zipkes, C. Sias, and M. K?hl, Phys. Rev. Lett. , 2009, 103(15): 150601
doi: 10.1103/PhysRevLett.103.150601
16 J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, and T. Giamarchi, arXiv:1106.0828 , 2011
17 L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. Lett. , 2004, 93(14): 140406
doi: 10.1103/PhysRevLett.93.140406
18 C. D. Fertig, K. M. O’Hara, J. H. Huckans, S. L. Rolston, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. , 2005, 94(12): 120403
doi: 10.1103/PhysRevLett.94.120403
19 J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. , 2007, 99(15): 150604
doi: 10.1103/PhysRevLett.99.150604
20 J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature , 2008, 453(7197): 891
doi: 10.1038/nature07000
21 G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature , 2008, 453(7197): 895
doi: 10.1038/nature07071
22 B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys. , 2010, 6(5): 354
doi: 10.1038/nphys1635
23 V. A. Kashurnikov, A. I. Podlivaev, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. B , 1996, 53(19): 13091
doi: 10.1103/PhysRevB.53.13091
24 E. H. Lieb and W. Liniger, Phys. Rev. , 1963, 130(4): 1605
doi: 10.1103/PhysRev.130.1605
25 L. Tonks, Phys. Rev. , 1936, 50(10): 955
doi: 10.1103/PhysRev.50.955
26 M. Girardeau, J. Math. Phys. , 1960, 1(6): 516
doi: 10.1063/1.1703687
27 M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, arXiv:1101.5337 , 2011, to appear in Rev. Mod. Phys.
28 In this paper we use the linear momentum and coordinates and velocities. The angular momentum and angle and angular velocity can easily be written as Lz = pL/(2π), ? = 2πx/L, ωz = 2πv/L, respectively.
29 E. H. Lieb, Phys. Rev. , 1963, 130(4): 1616
doi: 10.1103/PhysRev.130.1616
30 F. D. M. Haldane, Phys. Rev. Lett. , 1981, 47: 1840, note a misprint in Eq. (7) for the density-density correlator: the sign before the second therm should be minus.
31 C. Raman, M. K?hl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. , 1999, 83(13): 2502
doi: 10.1103/PhysRevLett.83.2502
32 A. Y. Cherny, J. S. Caux, and J. Brand, Phys. Rev. A , 2009, 80(4): 043604
doi: 10.1103/PhysRevA.80.043604
33 M. Ueda and A. J. Leggett, Phys. Rev. Lett. , 1999, 83(8): 1489
doi: 10.1103/PhysRevLett.83.1489
34 M. A. Cazalilla, J. Phys. B , 2004, 37(7): S1
doi: 10.1088/0953-4075/37/7/051
35 H. P. Büchler, V. B. Geshkenbein, and G. Blatter, Phys. Rev. Lett. , 2001, 87(10): 100403
doi: 10.1103/PhysRevLett.87.100403
36 R. Citro, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. B , 2009, 79(17): 172505
doi: 10.1103/PhysRevB.79.172505
37 T. Cheon and T. Shigehara, Phys. Rev. Lett. , 1999, 82(12): 2536
doi: 10.1103/PhysRevLett.82.2536
38 A. Y. Cherny, J. S. Caux, J. Brand, and J. Sib, Fed. Univ. Math. Phys. , 2010, 3: 289
39 G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A , 2004, 70: 013608, note misprints in Eq. (20) for the drag force in this paper.
40 P. C. Hohenberg and P. M. Platzman, Phys. Rev. , 1966, 152(1): 198
doi: 10.1103/PhysRev.152.198
41 J. Brand and A. Y. Cherny, Phys. Rev. A , 2005, 72(3): 033619
doi: 10.1103/PhysRevA.72.033619
42 A. Y. Cherny and J. Brand, Phys. Rev. A , 2006, 73(2): 023612
doi: 10.1103/PhysRevA.73.023612
43 N. N. Bogoliubov, J. Phys. USSR , 1947, 11: 23, reprinted in Ref. [49]
44 N. N. Bogoliubov, Lectures on Quantum Statistics, Vol. 2, New York: Gordon and Breach, 1970
45 A. Y. Cherny and J. Brand, Phys. Rev. A , 2009, 79(4): 043607
doi: 10.1103/PhysRevA.79.043607
46 D. L. Kovrizhin and L. A. Maksimov, Phys. Lett. A , 2001, 282(6): 421
doi: 10.1016/S0375-9601(01)00197-9
47 M. D. Girardeau and M. Olshanii, Phys. Rev. A , 2004, 70(2): 023608
doi: 10.1103/PhysRevA.70.023608
48 B. E. Granger and D. Blume, Phys. Rev. Lett. , 2004, 92(13): 1733202
doi: 10.1103/PhysRevLett.92.133202
49 D. Pines (Ed.), The Many-Body Problem, New York: W. A. Benjamin, 1990
50 M. Gattobigio, J. Phys. B , 2006, 39(10): S191
doi: 10.1088/0953-4075/39/10/S18
51 V. N. Popov, Theor. Math. Phys. , 1972, 11: 565
doi: 10.1007/BF01028373
52 V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Dordrecht: Reidel, 1983
doi: 10.1007/978-94-009-6978-0
53 V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge: Cambridge University Press, 1993, see Section XVIII.2
54 A. D. Mironov and A. V. Zabrodin, Phys. Rev. Lett. , 1991, 66(5): 534
doi: 10.1103/PhysRevLett.66.534
55 A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bozonization and Strongly Correlated Systems, Cambridge: Cambridge University Press, 1998
56 G. E. Astrakharchik, Quantum Monte Carlo Study of Ultracold Gases, , Universit‘a degli Studi di Trento , 2004, Section 1.7.4
57 N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Stat. Mech.: Th. Exp. , 2009, 2009: P04003
58 A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, arXiv:1010.2268 , 2010
59 A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, Phys. Rev. B , 2011, 84(4): 045408
doi: 10.1103/PhysRevB.84.045408
60 J. S. Caux and P. Calabrese, Phys. Rev. A , 2006, 74(3): 031605
doi: 10.1103/PhysRevA.74.031605
61 J. S. Caux, J. Math. Phys. , 2009, 50(9): 095214
doi: 10.1063/1.3216474
62 M. Gaudin, La fonction d’onde de Bethe., Collection du Commissariat a l’Energie Atomique. Serie Scientifique. Paris etc.: Masson. XVI, p330 , 1983
63 V. E. Korepin, Commun. Math. Phys. , 1982, 86(3): 391
doi: 10.1007/BF01212176
64 N. A. Slavnov, Teor. Mat. Fiz. , 1989, 79: 232
65 N. A. Slavnov, Teor. Mat. Fiz. , 1990, 82: 273
66 A. Y. Cherny and J. Brand, J. Phys.: Conf. Ser. , 2008, 129: 012051
doi: 10.1088/1742-6596/129/1/012051
67 A. Imambekov and L. I. Glazman, Phys. Rev. Lett. , 2008, 100(20): 206805
doi: 10.1103/PhysRevLett.100.206805
68 Note that the field theory predictions of [67] actually include a singularity also for ω>ω+(k), with a universal shoulder ratio. We neglect this here since it gives only a small correction to the results.
69 We slightly change the notations: our ω±and±μ±correspond to ω1,2 and μ1,2 in Ref. [67], respectively. We also denote the density of particles n and the Fermi wavevector for quasiparticles q0 instead of D and q used in Refs. [53, 67], respectively .
70 V. N. Golovach, A. Minguzzi, and L. I. Glazman, Phys. Rev. A , 2009, 80(4): 043611
doi: 10.1103/PhysRevA.80.043611
71 Y. Kagan, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. A , 2000, 61(4): 045601
doi: 10.1103/PhysRevA.61.045601
72 J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 1972
73 A. Trombettoni and A. Smerzi, Phys. Rev. Lett. , 2001, 86(11): 2353
doi: 10.1103/PhysRevLett.86.2353
74 E. Altman, A. Polkovnikov, E. Demler, B. I. Halperin, and M. D. Lukin, Phys. Rev. Lett. , 2005, 95(2): 020402
doi: 10.1103/PhysRevLett.95.020402
75 A. Polkovnikov, E. Altman, E. Demler, B. Halperin, and M. D. Lukin, Phys. Rev. A , 2005, 71(6): 063613
doi: 10.1103/PhysRevA.71.063613
76 J. Ruostekoski and L. Isella, Phys. Rev. Lett. , 2005, 95(11): 110403
doi: 10.1103/PhysRevLett.95.110403
77 A. R. Kolovsky, New J. Phys. , 2006, 8(9): 197
doi: 10.1088/1367-2630/8/9/197
78 I. Danshita and C. W. Clark, Phys. Rev. Lett. , 2009, 102(3): 030407
doi: 10.1103/PhysRevLett.102.030407
79 P. W. Anderson, Phys. Rev. , 1958, 109(5): 1492
doi: 10.1103/PhysRev.109.1492
80 L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. , 2010, 6(2): 87
doi: 10.1038/nphys1507
81 G. Modugno, Rep. Prog. Phys. , 2010, 73(10): 102401
doi: 10.1088/0034-4885/73/10/102401
82 L. Sanchez-Palencia, Phys. Rev. A , 2006, 74(5): 053625
doi: 10.1103/PhysRevA.74.053625
83 L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett. , 2007, 98(21): 210401
doi: 10.1103/PhysRevLett.98.210401
84 P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, and L. Sanchez-Palencia, Phys. Rev. Lett. , 2007, 98(17): 170403
doi: 10.1103/PhysRevLett.98.170403
85 P. Lugan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Phys. Rev. Lett. , 2007, 99(18): 180402
doi: 10.1103/PhysRevLett.99.180402
86 T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. , 2007, 98(21): 210602
doi: 10.1103/PhysRevLett.98.210602
87 A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. , 2008, 100(9): 094101
doi: 10.1103/PhysRevLett.100.094101
88 G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett. , 2008, 100(8): 084103
doi: 10.1103/PhysRevLett.100.084103
89 G. M. Falco, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. B , 2009, 80(10): 104515
doi: 10.1103/PhysRevB.80.104515
90 I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. , 2010, 6(11): 900
doi: 10.1038/nphys1758
91 J. Radi?, V. Ba?i?, D. Juki?, M. Segev, and H. Buljan, Phys. Rev. A , 2010, 81(6): 063639
doi: 10.1103/PhysRevA.81.063639
92 J. W. Goodman, Statistical Properties of Laser Speckle Patterns, in: Laser Speckle and Related Phenomena, edited by J.-C. Dainty , Berlin: Springer-Verlag, 1975, pp 9–75
doi: 10.1007/BFb0111436
93 D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, New J. Phys. , 2006, 8(8): 165
doi: 10.1088/1367-2630/8/8/165
94 D. Pines and P. Nozières, The Theory of Quantum Liquids: Normal Fermi Liquids, New York: W. A. Benjamin, 1966, see Eq. (2.69)
95 E. Timmermans and R. C?té, Phys. Rev. Lett. , 1998, 80(16): 3419
doi: 10.1103/PhysRevLett.80.3419
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed