Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (2): 208-217   https://doi.org/10.1007/s11467-011-0199-7
  REVIEW ARTICLE 本期目录
Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties
Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties
Hui Li (李辉), Hailin Peng (彭海琳,), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范,)
Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
 全文: PDF(634 KB)   HTML
Abstract

Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological insulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characterization of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates.We also demonstrate the evolution of Raman spectra with the number of few-layer topological insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.

Key wordstopological insulator    nanostructure    synthesis    Raman    transport    surface state manipulation
收稿日期: 2011-06-27      出版日期: 2012-04-01
Corresponding Author(s): null,Email:hlpeng@pku.edu.cn; null,Email:zfliu@pku.edu.cn   
 引用本文:   
. Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Frontiers of Physics, 2012, 7(2): 208-217.
Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties. Front. Phys. , 2012, 7(2): 208-217.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0199-7
https://academic.hep.com.cn/fop/CN/Y2012/V7/I2/208
1 H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. , 2009, 5: 438
2 J. E. Moore, Nat. Mater. , 2010, 464: 194
3 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. , 2010, 82: 3045
4 Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science , 2009, 325: 178
5 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. BansilD. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. , 2009, 5: 398
6 J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. , 2009, 103: 406601
7 D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. , 2009, 103: 146401
8 A. A. Taskin and Y. Ando, Phys. Rev. B , 2009, 80: 085303
9 J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. Mc- Donald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B , 2010, 81: 205407
10 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature , 2008, 452: 970
11 Z. Y. Wang, T. Lin, P. Wei, X. F. Liu, R. Dumas, K. Liu, and J. Shi, Appl. Phys. Lett. , 2010, 97: 042112
12 Y. Zhang, C. Z. Chang, K. He, L. L. Wang, X. Chen, J. F. Jia, X. C. Ma, and Q. K. Xue, Appl. Phys. Lett. , 2010, 97: 194102
13 H. L. Peng, K. J. Lai,D. S. Kong, S. Meister, Y. L. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nat. Mater. , 2010, 9: 225
14 J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, Nano Lett. , 2010, 10: 1076
15 F. X. Xiu, L. A. He, Y. Wang, L. N. Cheng, L. T. Chang, M. R. Lang, G. A. Huang, X. F. Kou, Y. Zhou, X. W. Jiang, Z. G. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nanotechnol. , 2011, 6: 216
16 H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo- Herrero, Nano Lett. , 2010, 10: 5032
17 D. S. Kong, W. H. Dang, J. J. Cha, H. Li, S. Meister, H. L. Peng, Z. F. Liu, and Y. Cui, Nano Lett. , 2010, 10: 2245
18 J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. , 2010, 105: 4
19 G. H. Zhang, H. J. Qin, J. Chen, X. Y. He, L. Lu, Y. Q. Li, and K. H. Wu, Adv. Funct. Mater. , 2011, 21: 2351
20 V. Goyal, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. , 2010, 97: 133117
21 D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett. , 2010, 10: 1209
22 S. S. Hong, W. Kundhikanjana, J. J. Cha, K. J. Lai, D. S. Kong, S. Meister,M. A. Kelly, Z. X. Shen, and Y. Cui, Nano Lett. , 2010, 10: 3118
23 J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E.M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science , 2011, 331: 568
24 D. S. Kong, J. C. Randel, H. L. Peng, J. J. Cha, S. Meister, K. J. Lai, Y. L. Chen, Z. X. Shen, H. C. Manoharan, and Y. Cui, Nano Lett. , 2010, 10: 329
25 Y. F. Lin, H. W. Chang, S. Y. Lu, and C. W. Liu, J. Phys. Chem. C , 2007, 111: 18538
26 Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phys. , 2010, 6: 584
27 H. W. Liu, H. T. Yuan, N. Fukui, L. Zhang, J. F. Jia, Y. Iwasa, M. W. Chen, T. Hashizume, T. Sakurai, and Q. K. Xue, Cryst. Growth Des. , 2010, 10: 4491
28 H. M. Cui, H. Liu, J. Y. Wang, X. Li, F. Han, and R. I. Boughton, J. Cryst. Growth , 2004, 271: 456
29 S. H. Yu, J. Yang, Y. S. Wu, Z. H. Han, J. Lu, Y. Xie, and Y. T. Qian, J. Mater. Chem. , 1998, 8: 1949
30 Y. Y. Li, G. A. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. (Deerfield Beach Fla.) , 2010, 22: 4002
31 P. Cheng, C. L. Song, T. Zhang, Y. Y. Zhang, Y. L. Wang, J. F. Jia, J. Wang, Y. Y. Wang, B. F. Zhu, X. Chen, X. C. Ma, K. He, L. L. Wang, X. Dai, Z. Fang, X. C. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett. , 2010, 105: 076801
32 W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Nano Lett. , 2010, 10: 2870
33 C. M. Lieber, MRS Bull. , 2003, 28: 486
34 P. D. Yang, MRS Bull. , 2005, 30: 85
35 P. Gao and Z. L. Wang, J. Phys. Chem. B , 2002, 106: 12653
36 M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. , 2002, 80: 1058
37 S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett. , 2006, 6: 1514
38 J. S. Lee, S. Brittman, D. Yu, and H. Park, J. Am. Chem. Soc. , 2008, 130: 6252
39 H. L. Peng, S. Meister, C. K. Chan, X. F. Zhang, and Y. Cui, Nano Lett. , 2006, 7: 199
40 H. L. Peng, C. Xie, D. T. Schoen, and Y. Cui, Nano Lett. , 2008, 8: 1511
41 A. Koma, Thin Solid Films , 1992, 216: 72
42 A. Koma, J. Cryst. Growth , 1999, 201: 236
43 H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. , 2010, 12: 11
44 G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X. Dai, Z. Fang, and K. H. Wu, Appl. Phys. Lett. , 2009, 95: 053114
45 A. K. Geim andK. S.Novoselov, Nat. Mater. , 2007, 6: 183
46 C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dr?scher, T. Ihn, and K. Ensslin, Front. Phys. , 2011, 6(3): 271
47 S. Miao, J. Zhu, X. Zhang, and Z. Y. Cheng, Phys. Rev. B , 2001, 65: 052101
48 T. Kehagias, P. Komninou, G. Nouet, P. Ruterana, and T. Karakostas, Phys. Rev. B , 2001, 64: 195329
49 C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. L.Wang, K. He, X. Chen, J. F. Jia, Y. Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett. , 2010, 97: 143118
50 M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. , 2010, 10: 751
51 W. Richter and C. R. Becker, Phys. Status Solidi B , 1977, 84: 619
52 Y. I. Yuzyuk, R. S. Katiyar, V. A. Alyoshin, I. N. Zakharchenko, D. A. Markov, and E. V. Sviridov, Phys. Rev. B , 2003, 68: 104104
53 P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, J. Appl. Phys. , 1999, 86: 828
54 G. Wedler, C. M. Schneider, A. Trampert, and R. Koch, Phys. Rev. Lett. , 2004, 93: 236101
55 A. Fillon, G. Abadias, A. Michel, C. Jaouen, and P. Villechaise, Phys. Rev. Lett. , 2010, 104: 096101
56 G. Springholz and K. Wiesauer, Phys. Rev. Lett. , 2002, 88: 015507
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed