Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (3) : 31602    https://doi.org/10.1007/s11467-019-0888-1
Research article
Single-step multipartite entangled states generation from coupled circuit cavities
Xiao-Tao Mo, Zheng-Yuan Xue()
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
 Download: PDF(939 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Green–Horne–Zeilinger states are a typical type of multipartite entangled states, which plays a central role in quantum information processing. For the generation of multipartite entangled states, the singlestep method is more preferable as the needed time will not increase with the increasing of the qubit number. However, this scenario has a strict requirement that all two-qubit interaction strengths should be the same, or the generated state will be of low quality. Here, we propose a scheme for generating multipartite entangled states of superconducting qubits, from a coupled circuit cavities scenario, where we rigorously achieve the requirement via adding an extra z-direction ac classical field for each qubit, leading the individual qubit-cavity coupling strength to be tunable in a wide range, and thus can be tuned to the same value. Meanwhile, in order to obtain our wanted multi-qubits interaction, xdirection ac classical field for each qubit is also introduced. By selecting the appropriate parameters, we numerically shown that high-fidelity multi-qubit GHZ states can be generated. In addition, we also show that the coupled cavities scenario is better than a single cavity case. Therefore, our proposal represents a promising alternative for multipartite entangled states generation.

Keywords quantum information processing      quantum entanglement      quantum state engineering     
Corresponding Author(s): Zheng-Yuan Xue   
Issue Date: 17 April 2019
 Cite this article:   
Xiao-Tao Mo,Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0888-1
https://academic.hep.com.cn/fop/EN/Y2019/V14/I3/31602
1 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
2 R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)
https://doi.org/10.1103/PhysRevLett.86.5188
3 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
4 S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)
https://doi.org/10.1126/science.273.5278.1073
5 A. J. Leggett, Realism and the physical world, Rep. Prog. Phys. 71(2), 022001 (2008)
https://doi.org/10.1088/0034-4885/71/2/022001
6 P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Quantum information processing and communication, Eur. Phys. J. D 36(2), 203(2005)
https://doi.org/10.1140/epjd/e2005-00251-1
7 D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Bells theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
https://doi.org/10.1119/1.16243
8 M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature 467(7315), 570 (2010)
https://doi.org/10.1038/nature09418
9 C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)
https://doi.org/10.1088/1367-2630/15/11/115003
10 R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)
https://doi.org/10.1038/nature13171
11 S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)
https://doi.org/10.1103/PhysRevA.90.054302
12 S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
https://doi.org/10.1103/PhysRevA.92.022328
13 H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett. 117(25), 250502 (2016)
https://doi.org/10.1103/PhysRevLett.117.250502
14 C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
15 L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarizationentangled decoherence-free states, Ann. Phys. 371, 287 (2016)
https://doi.org/10.1016/j.aop.2016.04.022
16 M. X. Dong, W. Zhang, Z. B. Hou, Y. C. Yu, S. Shi, D. S. Ding, and B. S. Shi, Experimental realization of narrowband four-photon Greenberger–Horne–Zeilinger state in a single cold atomic ensemble, Opt. Lett. 42(22), 4691 (2017)
https://doi.org/10.1364/OL.42.004691
17 X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Groundstate blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
https://doi.org/10.1103/PhysRevA.96.012328
18 R. Y. Yan, Z. B. Feng, C. L. Zhang, M. Li, X. J. Lu, and Y. Q. Zhou, Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity, Laser Phys. Lett. 15(11), 115205 (2018)
https://doi.org/10.1088/1612-202X/aae5ac
19 C. P. Yang, and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
20 X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
https://doi.org/10.1103/PhysRevLett.117.210502
21 Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)
https://doi.org/10.1007/s11467-018-0826-7
22 K. Mølmer and A. Sørensen, Multiparticle entanglement of hot trapped ions, Phys. Rev. Lett. 82(9), 1835 (1999)
https://doi.org/10.1103/PhysRevLett.82.1835
23 S. B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87(23), 230404 (2001)
https://doi.org/10.1103/PhysRevLett.87.230404
24 F. Plastina, R. Fazio, and G. Massimo Palma, Macroscopic entanglement in Josephson nanocircuits, Phys. Rev. B 64(11), 113306 (2001)
https://doi.org/10.1103/PhysRevB.64.113306
25 S. B. Zheng, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity, Phys. Rev. A 66(6), 060303 (2002)
https://doi.org/10.1103/PhysRevA.66.060303
26 D. I. Tsomoko, S. Ashhab, and F. Nori, Fully connected net-work of superconducting qubits in a cavity, New J. Phys. 10(11), 113020 (2008)
https://doi.org/10.1088/1367-2630/10/11/113020
27 A. Galiautdinov and J. M. Martinis, Maximally entangling tripartite protocols for Josephson phase qubits, Phys. Rev. A 78, 010305(R) (2008)
28 J. Zhang, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori, Generating stationary entangled states in superconducting qubits, Phys. Rev. A 79(5), 052308 (2009)
https://doi.org/10.1103/PhysRevA.79.052308
29 C. L. Hutchison, J. M. Gambetta, A. Blais, and F. K. Wilhelm, Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement, Can. J. Phys. 87(3), 225 (2009)
https://doi.org/10.1139/P08-140
30 Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)
https://doi.org/10.1103/PhysRevB.81.104524
31 S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
https://doi.org/10.1103/PhysRevB.84.134519
32 T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett. 106(13), 130506 (2011)
https://doi.org/10.1103/PhysRevLett.106.130506
33 Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J.Guo, W. X. Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and H. Wang, Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett. 117(11), 110501 (2016)
https://doi.org/10.1103/PhysRevLett.117.110501
34 C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
https://doi.org/10.1103/PhysRevLett.119.180511
35 Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
36 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
37 M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
https://doi.org/10.1126/science.1231930
38 X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
39 E. Solano, G. S. Agarwal, and H. Walther, Strongdriving-assisted multipartite entanglement in cavity QED, Phys. Rev. Lett. 90(2), 027903 (2003)
https://doi.org/10.1103/PhysRevLett.90.027903
[1] Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum[J]. Front. Phys. , 2017, 12(5): 120307-.
[2] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[3] Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang. Experimental detection of quantum entanglement[J]. Front. Phys. , 2013, 8(4): 357-374.
[4] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front Phys Chin, 2009, 4(1): 21-37.
[5] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
[6] Yanhua Shih. The physics of 2≠1 + 1[J]. Front. Phys. , 2007, 2(2): 125-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed