Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (4) : 42502    https://doi.org/10.1007/s11467-019-0892-5
Letter
Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides
Yao Lu1, Qiang Wu1(), Qi Zhang1, Ri-De Wang1, Bin Zhang2(), Wen-Juan Zhao1, Deng Zhang1, Hao Xiong1, Cheng-Liang Yang3, Ji-Wei Qi1, Chong-Pei Pan1, Jing-Jun Xu1
1. The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
2. College of Science, Civil Aviation University of China, Tianjin 300300, China
3. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130039, China
 Download: PDF(9629 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We studied the mode-conversion process of terahertz pulses from a planar subwavelength waveguide to a tilted rectangular subwavelength waveguide. An unusual wavefront rotation, which led to an extra conversion time, was observed using a time-resolved imaging technique. We simulated the mode conversion process by a finite-difference time-domain method, and the results agreed well with the experiments. According to the simulations, the conversion time was demonstrated to become longer as the tilt angle or width of the rectangular waveguide increased. This work provides the possibility to optimize the future high-speed communications and terahertz integrated platforms.

Keywords ultrafast phenomenon      mode conversion      subwavelength waveguides      terahertz waves     
Corresponding Author(s): Qiang Wu,Bin Zhang   
Issue Date: 17 April 2019
 Cite this article:   
Yao Lu,Qiang Wu,Qi Zhang, et al. Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides[J]. Front. Phys. , 2019, 14(4): 42502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0892-5
https://academic.hep.com.cn/fop/EN/Y2019/V14/I4/42502
1 W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, Ultrafast all-optical graphene modulator, Nano Lett. 14(2), 955 (2014)
https://doi.org/10.1021/nl404356t
2 M. E. Fermann and I. Hartl, Ultrafast fiber laser technology, IEEE J. Sel. Top. Quantum Electron. 15(1), 191 (2009)
https://doi.org/10.1109/JSTQE.2008.2010246
3 S. Sugiura and H. Iizuka, Deep-subwavelength MIMO using graphene-based nanoscale communication channel, IEEE Access 2, 1240 (2014)
https://doi.org/10.1109/ACCESS.2014.2364091
4 L. R. Chen, J. Wang, B. Naghdi, and I. Glesk, Subwavelength grating waveguide devices for telecommunications applications, IEEE J. Sel. Top. Quantum Electron. 25(3), 8200111 (2019)
https://doi.org/10.1109/JSTQE.2018.2879015
5 C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Opt. Express 18(25), 26351 (2010)
https://doi.org/10.1364/OE.18.026351
6 Y. Lu, Q. Wu, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, J. Appl. Phys. 123(22), 223103 (2018)
https://doi.org/10.1063/1.5030515
7 A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, and H. Meng, Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip, Nature 556(7701), 349 (2018)
https://doi.org/10.1038/s41586-018-0028-z
8 W. Zhang and J. Yao, A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing, Nat. Commun. 9(1), 1396 (2018)
https://doi.org/10.1038/s41467-018-03738-3
9 B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6(1), 6695 (2015)
https://doi.org/10.1038/ncomms7695
10 H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P.T. Rakich, Control of coherent information via onchip photonic-phononic emitter-receivers, Nat. Commun. 6, 6427 (2015)
https://doi.org/10.1038/ncomms7427
11 A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photon. 9, 374 (2015)
https://doi.org/10.1038/nphoton.2015.69
12 Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing, Opt. Lett. 43(9), 1962 (2018)
https://doi.org/10.1364/OL.43.001962
13 D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, 10-channel mode (de)multiplexer with dual polarizations, Laser Photon. Rev. 12(1), 1700109 (2018)
https://doi.org/10.1002/lpor.201700109
14 S. Koenig, D. Lopezdiaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, Wireless sub-THz communication system with high data rate, Nat. Photon. 7(12), 977 (2013)
https://doi.org/10.1038/nphoton.2013.275
15 S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, The 2017 terahertz science and technology roadmap, J. Phys. D Appl. Phys. 50(4), 043001 (2017)
https://doi.org/10.1088/1361-6463/50/4/043001
16 D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz frequency sensing and imaging: A time of reckoning future applications? Proc. IEEE 93(10), 1722 (2005)
https://doi.org/10.1109/JPROC.2005.853539
17 A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, Terahertz spectroscopy of explosives and drugs, Mater. Today 11(3), 18 (2008)
https://doi.org/10.1016/S1369-7021(08)70016-6
18 A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Antennaintegrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834 (2014)
https://doi.org/10.1021/nl5027309
19 Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure, Sci. Rep. 7(1), 17602 (2017)
https://doi.org/10.1038/s41598-017-17712-4
20 G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial, Science 335(6074), 1323 (2012)
https://doi.org/10.1126/science.1216022
21 B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide, Opt. Express 23(12), 16042 (2015)
https://doi.org/10.1364/OE.23.016042
22 P. Sivarajah, A. Steinbacher, B. Dastrup, and K. Nelson, THz-frequency cavity magnon-phonon-polaritons in the strong coupling regime, arXiv: 1707.03503 (2017)
23 C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry–Perot resonator with Bragg mirrors, Opt. Express 25(9), 9768 (2017)
https://doi.org/10.1364/OE.25.009768
24 T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, Femtosecond resolution of soft mode dynamics in structural phase transitions, Science 258(5083), 770 (1992)
https://doi.org/10.1126/science.258.5083.770
25 T. P. Dougherty, G. P. Wiederrecht, and K. A. Nel-son, Impulsive stimulated Raman scattering experiments in the polariton regime, J. Opt. Soc. Am. B 9(12), 2179 (1992)
https://doi.org/10.1364/JOSAB.9.002179
26 Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Opt. Express 17(11), 9219 (2009)
https://doi.org/10.1364/OE.17.009219
27 C. H. Henry and J. J. Hopfield, Raman scattering by polaritons, Phys. Rev. Lett. 15, 964 (1965)
https://doi.org/10.1103/PhysRevLett.15.964
[1] Xiao-Gang Wang (王晓钢), Qi-Bin Luan (栾其斌). Low frequency Whistler waves excited in fast magnetic reconnection processes[J]. Front. Phys. , 2013, 8(5): 585-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed