Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 64402    https://doi.org/10.1007/s11467-019-0913-4
MINI-REVIEW
The delay time of gravitational wave – gamma-ray burst associations
Bing Zhang()
Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
 Download: PDF(697 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The first gravitational wave (GW) – gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ~1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) – short GRB (sGRB) associations and GW burst – long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium, Δtbo; and the time for the jet to reach the energy dissipation and GRB emission site, ΔtGRB. For CBC-sGRB associations, Δtjet and Δtbo are correlated, and the final delay can be from 10 ms to a few seconds. For GWB-lGRB associations, Δtjet and Δtbo are independent. The latter is at least ~10 s, so that Δt of these associations is at least this long. For certain jet launching mechanisms of lGRBs, Δt can be minutes or even hours long due to the extended engine waiting time to launch a jet. We discuss the cases of GW170817/GRB 170817A and GW150914/GW150914-GBM within this theoretical framework and suggest that the delay times of future GW/GRB associations will shed light into the jet launching mechanisms of GRBs.

Keywords gravitational waves      gamma-ray bursts: general     
Corresponding Author(s): Bing Zhang   
Issue Date: 09 July 2019
 Cite this article:   
Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations[J]. Front. Phys. , 2019, 14(6): 64402.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0913-4
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/64402
1 B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
2 B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)
3 A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. 848(2), L14 (2017)
https://doi.org/10.3847/2041-8213/aa8f41
4 B. B. Zhang, B. Zhang, H. Sun, W. H. Lei, H. Gao, Y. Li, L. Shao, Y. Zhao, Y. D. Hu, H. J. Lü, X. F. Wu, X. L. Fan, G. Wang, A. J. Castro-Tirado, S. Zhang, B. Y. Yu, Y. Y. Cao, and E. W. Liang, A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, Nat. Commun. 9(1), 447 (2018)
https://doi.org/10.1038/s41467-018-02847-3
5 V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, et al., Fermi GBM observations of LIGO gravitational-wave event GW150914, Astrophys. J. 826(1), L6 (2016)
6 V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, et al., On the interpretation of the Fermi-GBM transient observed in coincidence with LIGO gravitational-wave event GW150914, Astrophys. J. 853(1), L9 (2018)
https://doi.org/10.3847/2041-8213/aaa4f2
7 J. Greiner, J. M. Burgess, V. Savchenko, and H. F. Yu, On the Fermi-GBM event 0.4 s after GW150914, Astrophys. J. 827(2), L38 (2016)
https://doi.org/10.3847/2041-8205/827/2/L38
8 M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi, Gravitational waves from black hole-neutron star binaries: Classification of waveforms, Phys. Rev. D 79(4), 044030 (2009)
https://doi.org/10.1103/PhysRevD.79.044030
9 S. Kobayashi and P. Mészáros, Gravitational radiation from gamma-ray burst progenitors, Astrophys. J. 589(2), 861 (2003)
https://doi.org/10.1086/374733
10 J.-J. Wei, B.-B. Zhang, X.-F. Wu, H. Gao, P. Mészáros, B. Zhang, Z.-G. Dai, S.-N. Zhang, and Z.-H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 2017(11), 035 (2017)
https://doi.org/10.1088/1475-7516/2017/11/035
11 I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)
https://doi.org/10.1103/PhysRevD.97.083013
12 B. Zhang, The Physics of Gamma-Ray Bursts, Cambridge: Cambridge University Press, 2018
https://doi.org/10.1017/9781139226530
13 J. Granot, D. Guetta, and R. Gill, Lessons from the short GRB 170817A: The first gravitational-wave detection of a binary neutron star merger, Astrophys. J. 850(2), L24 (2017)
https://doi.org/10.3847/2041-8213/aa991d
14 P. Veres, P. Mészáros, A. Goldstein, N. Fraija, V. Connaughton, E. Burns, R. D. Preece, R. Hamburg, C. A. Wilson-Hodge, M. S. Briggs, and D. Kocevski, Gammaray burst models in light of the GRB 170817A-GW170817 connection, arXiv: 1802.07328 (2018)
15 D. B. Lin, T. Liu, J. Lin, X. G. Wang, W. M. Gu, and E. W. Liang, First electromagnetic pulse associated with a gravitational-wave event: Profile, duration, and delay, Astrophys. J. 856(2), 90 (2018)
https://doi.org/10.3847/1538-4357/aab3d7
16 O. S. Salafia, G. Ghisellini, G. Ghirlanda, and M. Colpi, Interpreting GRB170817A as a giant flare from a jet-less double neutron star merger, Astron. Astrophys. 619, A18 (2018)
https://doi.org/10.1051/0004-6361/201732259
17 Y. Z. Qian and S. E. Woosley, Nucleosynthesis in neutrino-driven winds (I): The physical conditions, Astrophys. J. 471(1), 331 (1996)
https://doi.org/10.1086/177973
18 W. H. Lei, B. Zhang, and E. W. Liang, Hyperaccreting black hole as gamma-ray burst central engine (I): Baryon loading in gamma-ray burst jets, Astrophys. J. 765(2), 125 (2013)
https://doi.org/10.1088/0004-637X/765/2/125
19 B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini, and E. Quataert, The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc. 413(3), 2031 (2011)
https://doi.org/10.1111/j.1365-2966.2011.18280.x
20 P. C. Duffell, E. Quataert, D. Kasen, and H. Klion, Jet dynamics in compact object mergers: GW170817 likely had a successful jet, Astrophys. J. 866(1), 3 (2018)
https://doi.org/10.3847/1538-4357/aae084
21 K. P. Mooley, A. T. Deller, O. Gottlieb, E. Nakar, G. Hallinan, S. Bourke, D. A. Frail, A. Horesh, A. Corsi, and K. Hotokezaka, Superluminal motion of a relativistic jet in the neutron-star merger GW170817, Nature 561(7723), 355 (2018)
https://doi.org/10.1038/s41586-018-0486-3
22 G. Ghirlanda, O. S. Salafia, Z. Paragi, M. Giroletti, J. Yang, et al., Compact radio emission indicates a structured jet was produced by a binary neutron star merger, Science 363(6430), 968 (2019)
https://doi.org/10.1126/science.aau8815
23 M. Shibata and K. Taniguchi, Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves, Phys. Rev. D 77(8), 084015 (2008)
https://doi.org/10.1103/PhysRevD.77.084015
24 J. J. Geng, B. Zhang, A. Kölligan, R. Kuiper, and Y. F. Huang, Propagation of a short GRB jet in the ejecta: Jet launching delay time, jet structure, and GW170817/GRB 170817A, arXiv: 1904.02326 (2019)
25 K. Ioka and T. Nakamura, Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Prog. Theor. Exp. Phys. 2018(4), 043E02 (2018)
https://doi.org/10.1093/ptep/pty036
26 P. Mészáros and M. J. Rees, Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and comptonization, Astrophys. J. 530(1), 292 (2000)
https://doi.org/10.1086/308371
27 M. J. Rees and P. Mészáros, Dissipative photosphere models of gamma-ray bursts and X-ray flashes, Astrophys. J. 628(2), 847 (2005)
https://doi.org/10.1086/430818
28 A. Pe’er and F. Ryde, A theory of multicolor blackbody emission from relativistically expanding plasmas, Astrophys. J. 732(1), 49 (2011)
https://doi.org/10.1088/0004-637X/732/1/49
29 M. J. Rees and P. Mészáros, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93 (1994)
https://doi.org/10.1086/187446
30 S. Kobayashi, T. Piran, and R. Sari, Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490(1), 92 (1997)
https://doi.org/10.1086/512791
31 B. Zhang and H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J. 726(2), 90 (2011)
https://doi.org/10.1088/0004-637X/726/2/90
32 Z. L. Uhm and B. Zhang, Toward an understanding of GRB prompt emission mechanism (I): The origin of spectral lags, Astrophys. J. 825(2), 97 (2016)
https://doi.org/10.3847/0004-637X/825/2/97
33 F. Daigne and R. Mochkovitch, The expected thermal precursors of gamma-ray bursts in the internal shock model, Mon. Not. R. Astron. Soc. 336(4), 1271 (2002)
https://doi.org/10.1046/j.1365-8711.2002.05875.x
34 A. Pe’er, P. Mészáros, and M. J. Rees, The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J. 642(2), 995 (2006)
https://doi.org/10.1086/501424
35 B. Zhang and A. Pe’er, Evidence of an initially magnetically dominated outflow in GRB 080916C, Astrophys. J. 700(2), L65 (2009)
https://doi.org/10.1088/0004-637X/700/2/L65
36 H. Gao, B. B. Zhang, and B. Zhang, Stepwise filter correlation method and evidence of superposed variability components in gamma-ray burst prompt emission light curves, Astrophys. J. 748(2), 134 (2012)
https://doi.org/10.1088/0004-637X/748/2/134
37 B. J. Morsony, D. Lazzati, and M. C. Begelman, The origin and propagation of variability in the outflows of long-duration gamma-ray bursts, Astrophys. J. 723(1), 267 (2010)
https://doi.org/10.1088/0004-637X/723/1/267
38 W. Deng and B. Zhang, Low energy spectral index and ep evolution of quasi-thermal photosphere emission of gamma-ray bursts, Astrophys. J. 785(2), 112 (2014)
https://doi.org/10.1088/0004-637X/785/2/112
39 Ž. Bošnjak and F. Daigne, Spectral evolution in gammaray bursts: Predictions of the internal shock model and comparison to observations, Astron. Astrophys. 568, A45 (2014)
https://doi.org/10.1051/0004-6361/201322341
40 Z. L. Uhm, B. Zhang, and J. Racusin, Toward an understanding of GRB prompt emission mechanism (II): Patterns of peak energy evolution and their connection to spectral lags, Astrophys. J. 869(2), 100 (2018)
https://doi.org/10.3847/1538-4357/aaeb30
41 L. Baiotti and L. Rezzolla, Binary neutron star mergers: A review of Einstein’s richest laboratory, Rep. Prog. Phys. 80(9), 096901 (2017)
https://doi.org/10.1088/1361-6633/aa67bb
42 S. Rosswog, E. Ramirez-Ruiz, and M. B. Davies, Highresolution calculations of merging neutron stars (III): Gamma-ray bursts, Mon. Not. R. Astron. Soc. 345(4), 1077 (2003)
https://doi.org/10.1046/j.1365-2966.2003.07032.x
43 R. Ciolfi, W. Kastaun, J. Vijay Kalinani, and B. Giacomazzo, The first 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger, arXiv: 1904.10222 (2019)
44 Z. G. Dai, X. Y. Wang, X. F. Wu, and B. Zhang, Xray flares from postmerger millisecond pulsars, Science 311(5764), 1127 (2006)
https://doi.org/10.1126/science.1123606
45 W. H. Gao and Y. Z. Fan, Short-living supermassive magnetar model for the early X-ray flares following short GRBs, Chin. J. Astron. Astrophys. 6(5), 513 (2006)
https://doi.org/10.1088/1009-9271/6/5/01
46 B. D. Metzger, E. Quataert, and T. A. Thompson, Shortduration gamma-ray bursts with extended emission from protomagnetar spin-down, Mon. Not. R. Astron. Soc. 385(3), 1455 (2008)
https://doi.org/10.1111/j.1365-2966.2008.12923.x
47 A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
https://doi.org/10.1111/j.1365-2966.2010.17354.x
48 A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
https://doi.org/10.1093/mnras/sts683
49 H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. D. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
https://doi.org/10.1088/0004-637X/805/2/89
50 B. Zhang, Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars, Astrophys. J. 763(1), L22 (2013)
https://doi.org/10.1088/2041-8205/763/1/L22
51 H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
https://doi.org/10.1103/PhysRevD.93.044065
52 H. Sun, B. Zhang, and H. Gao, X-ray counterpart of gravitational waves due to binary neutron star mergers: Light curves, luminosity function, and event rate density, Astrophys. J. 835, 7 (2017)
https://doi.org/10.3847/1538-4357/835/1/7
53 Y. Q. Xue, X. C. Zheng, Y. Li, W. N. Brandt, B. Zhang, B. Luo, B. B. Zhang, F. E. Bauer, H. Sun, B. D. Lehmer, X. F. Wu, G. Yang, X. Kong, J. Y. Li, M. Y. Sun, J. X. Wang, and F. Vito, A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger, Nature 568(7751), 198 (2019)
https://doi.org/10.1038/s41586-019-1079-5
54 B. Zhang and P. Mészáros, Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar, Astrophys. J. 552(1), L35 (2001)
https://doi.org/10.1086/320255
55 D. Zhang and Z. G. Dai, Hyperaccreting disks around magnetars for gamma-ray bursts: Effects of strong magnetic fields, Astrophys. J. 718(2), 841 (2010)
https://doi.org/10.1088/0004-637X/718/2/841
56 C. D. Ott, The gravitational-wave signature of corecollapse supernovae, Class. Quantum Gravity 26(6), 063001 (2009)
https://doi.org/10.1088/0264-9381/26/6/063001
57 V. V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts, Nature 357(6378), 472 (1992)
https://doi.org/10.1038/357472a0
58 A. Corsi and P. Mészáros, Gamma-ray burst afterglow plateaus and gravitational waves: Multi-messenger signature of a millisecond magnetar? Astrophys. J. 702(2), 1171 (2009)
https://doi.org/10.1088/0004-637X/702/2/1171
59 T. Liu, C. Y. Lin, C. Y. Song, and A. Li, Comparison of gravitational waves from central engines of gamma-ray bursts: Neutrino-dominated accretion flows, Blandford– Znajek mechanisms, and millisecond magnetars, Astrophys. J. 850(1), 30 (2017)
https://doi.org/10.3847/1538-4357/aa92c4
60 S. E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J. 405, 273 (1993)
https://doi.org/10.1086/172359
61 A. I. MacFadyen and S. E. Woosley, Collapsars: Gammaray bursts and explosions in “failed supernovae”, Astrophys. J. 524(1), 262 (1999)
https://doi.org/10.1086/307790
62 A. I. MacFadyen, S. E. Woosley, and A. Heger, Supernovae, jets, and collapsars, Astrophys. J. 550(1), 410 (2001)
https://doi.org/10.1086/319698
63 S. E. Woosley and J. S. Bloom, The supernova–gammaray burst connection, Arastronomy & Astrophysics 44(1), 507 (2006)
https://doi.org/10.1146/annurev.astro.43.072103.150558
64 W. Kluźniak and M. Ruderman, The central engine of gamma-ray bursters, Astrophys. J. 505(2), L113 (1998)
https://doi.org/10.1086/311622
65 Z. G. Dai and T. Lu, γ-ray bursts and afterglows from rotating strange stars and neutron stars, Phys. Rev. Lett. 81(20), 4301 (1998)
https://doi.org/10.1103/PhysRevLett.81.4301
66 M. A. Ruderman, L. Tao, and W. Kluźniak, A central engine for cosmic gamma-ray burst sources, Astrophys. J. 542(1), 243 (2000)
https://doi.org/10.1086/309537
67 V. V. Usov, On the nature of non-thermal radiation from cosmological-ray bursters, Mon. Not. R. Astron. Soc. 267(4), 1035 (1994)
https://doi.org/10.1093/mnras/267.4.1035
68 M. M. Kasliwal, E. Nakar, L. P. Singer, D. L. Kaplan, D. O. Cook, et al., Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, Science 358(6370), 1559 (2017)
69 K. P. Mooley, E. Nakar, K. Hotokezaka, G. Hallinan, A. Corsi, et al., A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817, Nature 554(7691), 207 (2018)
https://doi.org/10.1038/nature25452
70 E. Nakar and T. Piran, Implications of the radio and X-ray emission that followed GW170817, Mon. Not. R. Astron. Soc. 478(1), 407 (2018)
https://doi.org/10.1093/mnras/sty952
71 O. Gottlieb, E. Nakar, and T. Piran, The cocoon emission – an electromagnetic counterpart to gravitational waves from neutron star mergers, Mon. Not. R. Astron. Soc. 473(1), 576 (2018)
https://doi.org/10.1093/mnras/stx2357
72 O. Bromberg, A. Tchekhovskoy, O. Gottlieb, E. Nakar, and T. Piran, The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta, Mon. Not. R. Astron. Soc. 475(3), 2971 (2018)
https://doi.org/10.1093/mnras/stx3316
73 B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
https://doi.org/10.3847/2041-8213/aa991c
74 R. Gill, A. Nathanail, and L. Rezzolla, When did the remnant of GW170817 collapse to a black hole? arXiv: 1901.04138 (2019)
https://doi.org/10.3847/1538-4357/ab16da
75 M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
https://doi.org/10.1103/PhysRevD.97.021501
76 L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
https://doi.org/10.3847/2041-8213/aaa401
77 A. Loeb, electromagnetic counterparts to black hole mergers detected by LIGO, Astrophys. J. 819(2), L21 (2016)
https://doi.org/10.3847/2041-8205/819/2/L21
78 S. E. Woosley, The progenitor of GW150914, Astrophys. J. 824(1), L10 (2016)
https://doi.org/10.3847/2041-8205/824/1/L10
79 L. Dai, J. C. McKinney, and M. C. Miller, Energetic constraints on electromagnetic signals from double black hole mergers, Mon. Not. R. Astron. Soc. 470(1), L92 (2017)
https://doi.org/10.1093/mnrasl/slx086
80 D. D’Orazio and A. Loeb, Single progenitor model for GW150914 and GW170104, Phys. Rev. D 97(8), 083008 (2018)
https://doi.org/10.1103/PhysRevD.97.083008
81 A. Janiuk, M. Bejger, S. Charzyński, and P. Sukova, On the possible gamma-ray burst–gravitational wave association in GW150914,New Astron. 51, 7 (2017)
https://doi.org/10.1016/j.newast.2016.08.002
82 R. Perna, D. Lazzati, and B. Giacomazzo, Short gammaray bursts from the merger of two black holes, Astrophys. J. 821(1), L18 (2016)
https://doi.org/10.3847/2041-8205/821/1/L18
83 S. S. Kimura, S. Z. Takahashi, and K. Toma, Evolution of an accretion disc in binary black hole systems, Mon. Not. R. Astron. Soc. 465(4), 4406 (2017)
https://doi.org/10.1093/mnras/stw3036
84 B. Zhang, Mergers of charged black holes: Gravitationalwave events, short gamma-ray bursts, and fast radio bursts, Astrophys. J. 827(2), L31 (2016)
https://doi.org/10.3847/2041-8205/827/2/L31
85 B. Zhang, Charged compact binary coalescence signal and electromagnetic counterpart of plunging black hole– neutron star mergers, Astrophys. J. 873(2), L9 (2019)
https://doi.org/10.3847/2041-8213/ab0ae8
86 Z. G. Dai, Inspiral of a spinning black hole–magnetized neutron star binary: Increasing charge and electromagnetic emission, Astrophys. J. 873(2), L13 (2019)
https://doi.org/10.3847/2041-8213/ab0b45
[1] Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network[J]. Front. Phys. , 2020, 15(5): 54501-.
[2] He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars[J]. Front. Phys. , 2020, 15(2): 24603-.
[3] Bai-Jiong Lin, Xiang-Ru Li, Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks[J]. Front. Phys. , 2020, 15(2): 24602-.
[4] Gabriela González, Andrea Viceré, Linqing Wen. Gravitational wave astronomy[J]. Front. Phys. , 2013, 8(6): 771-793.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed