Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 61301    https://doi.org/10.1007/s11467-019-0918-z
VIEW & PERSPECTIVE
Topological quantum walks: Theory and experiments
Jizhou Wu1,2(), Wei-Wei Zhang3(), Barry C. Sanders1,2,4()
1. Shanghai Branch, National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Shanghai 201315, China
2. CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3. Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
4. Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
 Download: PDF(582 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Jizhou Wu,Wei-Wei Zhang,Barry C. Sanders   
Issue Date: 21 August 2019
 Cite this article:   
Jizhou Wu,Wei-Wei Zhang,Barry C. Sanders. Topological quantum walks: Theory and experiments[J]. Front. Phys. , 2019, 14(6): 61301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0918-z
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/61301
1 C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Electrical detection of chargecurrent- induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotechnol. 9(3), 218 (2014)
https://doi.org/10.1038/nnano.2014.16
2 Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3, Nano Lett. 14(11), 6226 (2014)
https://doi.org/10.1021/nl502546c
3 D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1–x films, Nat. Mater. 17, 800 (2018)
https://doi.org/10.1038/s41563-018-0136-z
4 A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
https://doi.org/10.1016/S0003-4916(02)00018-0
5 T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A 82(3), 033429 (2010)
https://doi.org/10.1103/PhysRevA.82.033429
6 T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82(23), 235114 (2010)
https://doi.org/10.1103/PhysRevB.82.235114
7 T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
https://doi.org/10.1038/ncomms1872
8 J. K. Asbóth, Symmetries, topological phases, and bound states in the one-dimensional quantum walk, Phys. Rev. B 86, 195414 (2012)
https://doi.org/10.1103/PhysRevB.86.195414
9 M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3(3), 031005 (2013)
https://doi.org/10.1103/PhysRevX.3.031005
10 W. W. Zhang, B. C. Sanders, S. Apers, S. K. Goyal, and D. L. Feder, Detecting topological transitions in two dimensions by Hamiltonian evolution, Phys. Rev. Lett. 119(19), 197401 (2017)
https://doi.org/10.1103/PhysRevLett.119.197401
11 L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity–time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)
https://doi.org/10.1038/nphys4204
12 C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, and J. W. Pan, Observation of topologically protected edge states in a photonic two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100502 (2018)
https://doi.org/10.1103/PhysRevLett.121.100502
13 W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Uncover topology by quantum quench dynamics, Phys. Rev. Lett. 121(25), 250403 (2018)
https://doi.org/10.1103/PhysRevLett.121.250403
14 M. Sajid, J. K. Asbóth, D. Meschede, R. F. Werner, and A. Alberti, Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B 99(21), 214303 (2019)
https://doi.org/10.1103/PhysRevB.99.214303
15 J. Kempe, Quantum random walks: An introductory overview, Contemp. Phys. 44(4), 307 (2003)
https://doi.org/10.1080/00107151031000110776
16 Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
https://doi.org/10.1103/PhysRevA.48.1687
17 D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 50–59
18 A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 37–49
19 T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. A 35(12), 2745 (2002)
https://doi.org/10.1088/0305-4470/35/12/304
20 A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, in: Proc. 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp 59–68
21 A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37(1), 210 (2007)
https://doi.org/10.1137/S0097539705447311
22 F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37(2), 413 (2007)
https://doi.org/10.1137/050643684
23 E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory Comput. 4(1), 169 (2008)
https://doi.org/10.4086/toc.2008.v004a008
24 B. L. Douglas, and J. Wang, A classical approach to the graph isomorphism problem using quantum walks, J. Phys. A 41(7), 075303 (2008)
https://doi.org/10.1088/1751-8113/41/7/075303
25 A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
https://doi.org/10.1103/PhysRevLett.102.180501
26 S. Godoy and S. Fujita, A quantum random-walk model for tunneling diffusion in a 1D lattice: A quantum correction to Fick’s law, J. Chem. Phys. 97(7), 5148 (1992)
https://doi.org/10.1063/1.463812
27 O. Mülken and A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Phys. Rep. 502(2), 37 (2011)
https://doi.org/10.1016/j.physrep.2011.01.002
28 G. Di Molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Phys. Rev. A 88(4), 042301 (2013)
https://doi.org/10.1103/PhysRevA.88.042301
29 W. W. Zhang, S. K. Goyal, F. Gao, B. C. Sanders, and C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states, New J. Phys. 18(9), 093025 (2016)
https://doi.org/10.1088/1367-2630/18/9/093025
30 H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
https://doi.org/10.1103/PhysRevLett.103.090504
31 F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104, 100503 (2010)
https://doi.org/10.1103/PhysRevLett.104.100503
32 E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)
https://doi.org/10.1103/PhysRevX.7.031023
33 Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
https://doi.org/10.1126/science.aaw1611
34 J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Experimental implementation of the quantum randomwalk algorithm, Phys. Rev. A 67(4), 042316 (2003)
https://doi.org/10.1103/PhysRevA.67.042316
35 C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Phys. Rev. A 72(6), 062317 (2005)
https://doi.org/10.1103/PhysRevA.72.062317
36 M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
https://doi.org/10.1126/science.1174436
37 S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S. Summy, Quantum walk in momentum space with a Bose–Einstein condensate, Phys. Rev. Lett. 121(7), 070402 (2018)
https://doi.org/10.1103/PhysRevLett.121.070402
38 B. Do, M. L. Stohler, S. Balasubramanian, D. S. Elliott, C. Eash, E. Fischbach, M. A. Fischbach, A. Mills, and B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements, J. Opt. Soc. Am. B 22(2), 499 (2005)
https://doi.org/10.1364/JOSAB.22.000499
39 F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
https://doi.org/10.1126/sciadv.1500087
40 H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100(17), 170506 (2008)
https://doi.org/10.1103/PhysRevLett.100.170506
41 H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.- F. Qiao, A.-L. Yang, and X.-M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4, eaat3174 (2018)
https://doi.org/10.1126/sciadv.aat3174
42 S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
https://doi.org/10.1007/s11128-012-0432-5
43 E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)
https://doi.org/10.1103/PhysRevA.58.915
44 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
https://doi.org/10.1103/PhysRevLett.42.1698
45 A. T. Schmitz and W. A. Schwalm, Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk, Phys. Lett. A 380(11–12), 1125 (2016)
https://doi.org/10.1016/j.physleta.2016.01.028
46 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
47 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
48 S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. Math. 47(1), 85 (1946)
https://doi.org/10.2307/1969037
49 S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99(1), 48 (1974)
https://doi.org/10.2307/1971013
50 F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Statistical moments of quantum-walk dynamics reveal topological quantum transitions, Nat. Commun. 7(1), 11439 (2016)
https://doi.org/10.1038/ncomms11439
51 F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. Commun. 8(1), 15516 (2017)
https://doi.org/10.1038/ncomms15516
52 Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia, and X. M. Jin, Direct observation of topology from single-photon dynamics, Phys. Rev. Lett. 122(19), 193903 (2019)
https://doi.org/10.1103/PhysRevLett.122.193903
53 T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asbóth, and A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A 94(1), 013620 (2016)
https://doi.org/10.1103/PhysRevA.94.013620
54 S. Mugel, A. Celi, P. Massignan, J. K. Asbóth, M. Lewenstein, and C. Lobo, Topological bound states of a quantum walk with cold atoms, Phys. Rev. A 94(2), 023631 (2016)
https://doi.org/10.1103/PhysRevA.94.023631
55 T. Nitsche, T. Geib, C. Stahl, L. Lorz, C. Cedzich, S. Barkhofen, R. F. Werner, and C. Silberhorn, Eigenvalue measurement of topologically protected edge states in split-step quantum walks, New J. Phys. 21(4), 043031 (2019)
https://doi.org/10.1088/1367-2630/ab12fa
56 W. W. Zhang, S. K. Goyal, C. Simon, and B. C. Sanders, Decomposition of split-step quantum walks for simulating Majorana modes and edge states, Phys. Rev. A 95(5), 052351 (2017)
https://doi.org/10.1103/PhysRevA.95.052351
57 S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects, Phys. Rev. B 96(19), 195303 (2017)
https://doi.org/10.1103/PhysRevB.96.195303
58 B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus, Scattering theory of topological phases in discrete-time quantum walks, Phys. Rev. A 89(4), 042327 (2014)
https://doi.org/10.1103/PhysRevA.89.042327
59 S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, Measuring topological invariants in disordered discrete-time quantum walks, Phys. Rev. A 96(3), 033846 (2017)
https://doi.org/10.1103/PhysRevA.96.033846
60 J. K. Asbóth and H. Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R) (2013)
https://doi.org/10.1103/PhysRevB.88.121406
61 J. K. Asbóth, B. Tarasinski, and P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Phys. Rev. B 90, 125143 (2014)
https://doi.org/10.1103/PhysRevB.90.125143
62 H. Obuse, J. K. Asbóth, Y. Nishimura, and N. Kawakami, Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk, Phys. Rev. B 92(4), 045424 (2015)
https://doi.org/10.1103/PhysRevB.92.045424
63 C. Cedzich, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Bulk-edge correspondence of one-dimensional quantum walks, J. Phys. A 49(21), 21LT01 (2016)
https://doi.org/10.1088/1751-8113/49/21/21LT01
64 C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L. Veläzquez, A. H. Werner, and R. F. Werner, The topological classification of one-dimensional symmetric quantum walks, Annales Henri Poincaré 19, 325 (2018)
https://doi.org/10.1007/s00023-017-0630-x
65 C. Cedzich, T. Geib, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2, 95 (2018)
https://doi.org/10.22331/q-2018-09-24-95
66 C. Cedzich, and T. Geib, F. A. Grünbaum, L. Veläzquez, A. H. Werner, and R. F. Werner, Quantum walks: Schur functions meet symmetry protected topological phases, arXiv: 1903.07494 [math-ph] (2019)
67 J. K. Asbóth and J. M. Edge, Edge-state-enhanced transport in a two-dimensional quantum walk, Phys. Rev. A 91, 022324 (2015)
https://doi.org/10.1103/PhysRevA.91.022324
68 B. Wang, T. Chen, and X. Zhang, Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100501 (2018)
https://doi.org/10.1103/PhysRevLett.121.100501
69 X. Y. Xu, Q. Q. Wang, W. W. Pan, K. Sun, J. S. Xu, G. Chen, J. S. Tang, M. Gong, Y. J. Han, C. F. Li, and G. C. Guo, Measuring the winding number in a large-scale chiral quantum walk, Phys. Rev. Lett. 120(26), 260501 (2018)
https://doi.org/10.1103/PhysRevLett.120.260501
70 V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)
https://doi.org/10.1103/PhysRevLett.118.130501
71 A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
https://doi.org/10.1103/PhysRevLett.116.163901
72 L. Zhang, L. Zhang, S. Niu, and X. J. Liu, Dynamical classification of topological quantum phases, Sci. Bull. 63(21), 1385 (2018)
https://doi.org/10.1016/j.scib.2018.09.018
73 C. M. Bender, and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
https://doi.org/10.1103/PhysRevLett.80.5243
74 K. Mochizuki, D. Kim, and H. Obuse, Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss, Phys. Rev. A 93(6), 062116 (2016)
https://doi.org/10.1103/PhysRevA.93.062116
75 K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders, W. Yi, and P. Xue, Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics, Nat. Commun. 10(1), 2293 (2019)
https://doi.org/10.1038/s41467-019-10252-7
76 Y. Ming, C. T. Lin, S. D. Bartlett, and W. W. Zhang, Quantum topology identification with deep neural networks and quantum walks, arXiv: 1811.12630 [quant-ph] (2018)
77 B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. (2019), DOI: 10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41567-019-0554-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed