Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 63602    https://doi.org/10.1007/s11467-019-0920-5
RESEARCH ARTICLE
Evidence of anisotropic Landau level splitting in topological semimetal ZrSiS under high magnetic fields
Jun-Ran Zhang(), Bo Liu, Ming Gao, Yong-Bing Xu(), Rong Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
 Download: PDF(938 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magneto-transport study has been performed in topological semimetal ZrSiS single crystals under high pulsed magnetic fields. Obvious dependence of Landau level splitting on temperature and angular was investigated. The strong three-dimensional anisotropic nature of Landau level splitting under high pulsed magnetic fields was revealed by the angular dependent measurements, in which the orbital contribution is more dominant than Zeeman splitting. Our studies provide more insights into the physical properties of topological semimetals ZrSiS and shed light on future spintronic applications of ZrSiS.

Keywords topological semimetal      Landau level splitting      high magnetic field     
Corresponding Author(s): Jun-Ran Zhang,Yong-Bing Xu   
Issue Date: 21 August 2019
 Cite this article:   
Jun-Ran Zhang,Bo Liu,Ming Gao, et al. Evidence of anisotropic Landau level splitting in topological semimetal ZrSiS under high magnetic fields[J]. Front. Phys. , 2019, 14(6): 63602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0920-5
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/63602
1 N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
https://doi.org/10.1103/RevModPhys.90.015001
2 J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. Cava, and N. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
https://doi.org/10.1126/science.aac6089
3 C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H. Z. Lu, A. C. Potter, and F. Xiu, Quantum Hall effect based on Weyl orbits in Cd3As2, Nature 565(7739), 331 (2019)
https://doi.org/10.1038/s41586-018-0798-3
4 M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
https://doi.org/10.1038/ncomms4786
5 M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Large, non-saturating magnetoresistance in WTe2, Nature 514(7521), 205 (2014)
https://doi.org/10.1038/nature13763
6 R. Singha, A. K. Pariari, B. Satpati, and P. Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA 114(10), 2468 (2017)
https://doi.org/10.1073/pnas.1618004114
7 X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in Zr-SiS, Adv. Electron. Mater. 2(10), 1600228 (2016)
https://doi.org/10.1002/aelm.201600228
8 D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, and Z. Zhao, Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride, Nat. Commun. 6(1), 7804 (2015)
https://doi.org/10.1038/ncomms8804
9 X. C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and Y. Zhang, Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride, Nat. Commun. 6(1), 7805 (2015)
https://doi.org/10.1038/ncomms8805
10 L. M. Schoop, M. N. Ali, C. Strasser, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by nonsymmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7(1), 11696 (2016)
https://doi.org/10.1038/ncomms11696
11 Q. Xu, Z. Song, S. Nie, H. Weng, Z. Fang, and X. Dai, Two-dimensional oxide topological insulator with ironpnictide superconductor LiFeAs structure, Phys. Rev. B 92(20), 205310 (2015)
https://doi.org/10.1103/PhysRevB.92.205310
12 A. Topp, J. M. Lippmann, A. Varykhalov, V. Duppel, B. V. Lotsch, C. R. Ast, and L. M. Schoop, Non-symmorphic band degeneracy at the Fermi level in ZrSiTe, New J. Phys. 18(12), 125014 (2016)
https://doi.org/10.1088/1367-2630/aa4f65
13 M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S. Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93(20), 201104 (2016)
https://doi.org/10.1103/PhysRevB.93.201104
14 M. N. Ali, L. M. Schoop, C. Garg, J. M. Lippmann, E. Lara, B. Lotsch, and S. S. Parkin, Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS, Sci. Adv. 2(12), e1601742 (2016)
https://doi.org/10.1126/sciadv.1601742
15 M. Matusiak, J. R. Cooper, and D. Kaczorowski, Thermoelectric quantum oscillations in ZrSiS, Nat. Commun. 8(1), 15219 (2017)
https://doi.org/10.1038/ncomms15219
16 S. Schmult, V. V. Solovyev, S. Wirth, A. Groβer, T. Mikolajick, and I. V. Kukushkin, Magneto-optical confirmation of Landau level splitting in a GaN/AlGaN 2DEG grown on bulk GaN, J. Vac. Sci. Technol. B 37(2), 021210 (2019)
https://doi.org/10.1116/1.5088927
17 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
18 J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin, Z. G. Chen, Z. Wang, Q. Wang, J. Zhao, S. Li, X. Dai, J. Zou, Z. Xia, L. Li, and F. Xiu, Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun. 6(1), 7779 (2015)
https://doi.org/10.1038/ncomms8779
19 Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96(13), 136806 (2006)
https://doi.org/10.1103/PhysRevLett.96.136806
20 H. Masuda, H. Sakai, M. Tokunaga, M. Ochi, H. Takahashi, K. Akiba, A. Miyake, K. Kuroki, Y. Tokura, and S. Ishiwata, Impact of antiferromagnetic order on Landaulevel splitting of quasi-two-dimensional Dirac fermions in EuMnBi2, Phys. Rev. B 98(16), 161108(R) (2018)
https://doi.org/10.1103/PhysRevB.98.161108
21 J. Zhang, M. Gao, J. Zhang, X. Wang, X. Zhang, M. Zhang, W. Niu, R. Zhang, and Y. Xu, Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS, Front. Phys. 13(1), 137201 (2018)
https://doi.org/10.1007/s11467-017-0705-7
22 Y. Y. Lv, B. B. Zhang, X. Li, S. H. Yao, Y. Chen, J. Zhou, S. T. Zhang, M. H. Lu, and Y. F. Chen, Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals, Appl. Phys. Lett. 108(24), 244101 (2016)
https://doi.org/10.1063/1.4953772
23 S. Pezzini, M. R. van Delft, L. M. Schoop, B. V. Lotsch, A. Carrington, M. I. Katsnelson, N. E. Hussey, and S. Wiedmann, Unconventional mass enhancement around the Dirac nodal loop in ZrSiS, Nat. Phys. 14(2), 178 (2018)
https://doi.org/10.1038/nphys4306
24 Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
25 S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater. 13(9), 851 (2014)
https://doi.org/10.1038/nmat4023
26 J. Hu, Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations, Phys. Rev. B 96(4), 045127 (2017)
https://doi.org/10.1103/PhysRevB.96.045127
27 Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun. 7(1), 12516 (2016)
https://doi.org/10.1038/ncomms12516
[1] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[2] Ali Ebrahimian, Mehrdad Mehrdad Dadsetaniz. Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)[J]. Front. Phys. , 2018, 13(5): 137309-.
[3] Rui Yu,Zhong Fang,Xi Dai,Hongming Weng. Topological nodal line semimetals predicted from first-principles calculations[J]. Front. Phys. , 2017, 12(3): 127202-.
[4] Hai-Zhou Lu,Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields[J]. Front. Phys. , 2017, 12(3): 127201-.
[5] Masashi Tokunaga. Studies on multiferroic materials in high magnetic fields[J]. Front. Phys. , 2012, 7(4): 386-398.
[6] Jing-lei Zhang, Lin Jiao, Ye Chen, Hui-qiu Yuan. Universal behavior of the upper critical field in iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 463-473.
[7] ZUO Liang, ZHANG Yu-dong, ZHAO Xiang, HE Chang-shu, CLAUDE Esling. Effects of High Magnetic Fields on the Microstructure Formation in a 42CrMo Steel During Solid Phase Transformations[J]. Front. Phys. , 2006, 1(1): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed