Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Laser cooling and trapping of ytterbium atoms
Laser cooling and trapping of ytterbium atoms
, , , , , , , , , ,
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
xyxu@phy.ecnu.edu.cn
Abstract

The experiments on the laser cooling and trapping of ytterbium atoms are reported, including the two-dimensional transversal cooling, longitudinal velocity Zeeman deceleration, and a magneto-optical trap with a broadband transition at a wavelength of 399 nm. The magnetic field distributions along the axis of a Zeeman slower were measured and in a good agreement with the calculated results. Cold ytterbium atoms were produced with a number of about 107 and a temperature of a few milli-Kelvin. In addition, using a 556-nm laser, the excitations of cold ytterbium atoms at1S0-3P1 transition were observed. The ytterbium atoms will be further cooled in a 556-nm magneto-optical trap and loaded into a three-dimensional optical lattice to make an ytterbium optical clock.

Keyword: laser cooling and trapping; ytterbium; magneto–optical trap; optical frequency standards
References
1 M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature, 2005, 435: 321. DOI:10.1038/nature03541 [Cited within: ]
2 A. Brusch, R. L. Targat, X. Baillard, M. Fouche, and P. Lemonde, Phys. Rev. Lett. , 2006, 96: 103003. DOI:10.1103/PhysRevLett.96.103003 [Cited within: ]
3 A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Mirand a, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, Science, 2008, 319: 1805. DOI:10.1126/science.1153341 [Cited within: ]
4 N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg, J. C. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker, Phys. Rev. A, 2008, 77: 050501(R). DOI:10.1103/PhysRevA.77.050501 [Cited within: ]
5 Z. W. Barber, C. W. Hoyt, C. W. Oates, and L. Hollberg, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. Lett. , 2006, 96: 083002. DOI:10.1103/PhysRevLett.96.083002 [Cited within: ]
6 Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. W. Hoyt, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. Lett. , 2008, 100: 103002. DOI:10.1103/PhysRevLett.100.103002 [Cited within: ]
7 T. P. Heavner, S. R. Jefferts, E. A. Donley, J. H. Shirley, and T. E. Parker, Metrologia, 2005, 42: 411. DOI:10.1088/0026-1394/42/5/012 [Cited within: ]
8 K. Honda, Y. Takahashi, T. Kuwamoto, M. Fujimoto, and K. Toyoda, Phys. Rev. A, 1999, 59: R934. DOI:10.1103/PhysRevA.59.R934 [Cited within: ]
9 T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, Phys. Rev. A, 2000, 61: 051401(R). DOI:10.1103/PhysRevA.61.051401 [Cited within: ]
10 C. Y. Park and T. H. Yoon, Phys. Rev. A, 2003, 68: 055401. DOI:10.1103/PhysRevA.68.055401 [Cited within: ]
11 R. Maruyama, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Fortson, Phys. Rev. A, 2003, 68: 011403. DOI:10.1103/PhysRevA.68.011403 [Cited within: ]