Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices
Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices
Andrey R. Kolovsky1,2
1. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
2. Institute of Engineering Physics, Siberian Federal University, 660041 Krasnoyarsk, Russia
andrey.r.kolovsky@googlemail.com
Abstract

Quantum dynamics of a charged particle in a two-dimensional (2D) lattice subject to magnetic and electric fields is a rather complicated interplay between cyclotron oscillations (the case of vanishing electric field) and Bloch oscillations (zero magnetic field), details of which has not yet been completely understood. In the present work we suggest to study this problem by using cold atoms in optical lattices. We introduce a one-dimensional (1D) model which can be easily realized in laboratory experiments with quasi-1D optical lattices and show that this model captures many features of the cyclotron-Bloch dynamics of the quantum particle in 2D square lattices.

Keyword: optical lattice; Bloch dynamics; cyclotron oscillations; cold atoms
References
1 D. R. Hofstadter, Phys. Rev. B, 1976, 14(6): 2239. DOI:10.1103/PhysRevB.14.2239 [Cited within: ]
2 R. E. Peiers, Z. Phys. , 1993, 80: 763 [Cited within: ]
3 T. Nakanishi, T. Ohtsuki, and M. Saitoh, J. Phys. Soc. Jpn. , 1993, 62(8): 2773. DOI:10.1143/JPSJ.62.2773 [Cited within: ]
4 M. Glück, F. Keck, A. R. Kolovsky, and H. J. Korsch, Phys. Rev. Lett. , 2001, 86(14): 3116. DOI:10.1103/PhysRevLett.86.3116 [Cited within: ]
5 T. Nakanishi, T. Ohtsuki, and M. Saitoh, J. Phys. Soc. Jpn, 1995, 64(6): 2092. DOI:10.1143/JPSJ.64.2092 [Cited within: ]
6 G. Roati, C. D’ Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature, 2008, 453(7197): 895. DOI:10.1038/nature07071 [Cited within: ]
7 S. Aubry and G. André, Ann. Israel. Phys. Soc. , 1980, 3: 133 [Cited within: ]
8 P. G. Harper, Proc. Phys. Soc. A, 1955, 68(10): 874. DOI:10.1088/0370-1298/68/10/304 [Cited within: ]
9 A. R. Kolovsky, Europhys. Lett. , 2011, 93(2): 20003. DOI:10.1209/0295-5075/93/20003 [Cited within: ]
10 A. R. Kolovsky and G. Mantica, Phys. Rev. E, 2011, 83(4): 041123. DOI:10.1103/PhysRevE.83.041123 [Cited within: ]
11 I. Chesnokov, A. R. Kolovsky, and G. Mantica, in preparation [Cited within: ]
12 We note that in the experiment [6] the authors used a mirror to create the stand ing waves. In this work we assume the other scheme of the experimental setup, where the stand ing waves are formed by counter-propagating laser beams. [Cited within: ]
13 We recall that there is a family of transporting states in the original problem, each representative of which is naturally characterized by its dispersion in the two orthogonal directions [11]. [Cited within: ]