Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (4): 369-379   https://doi.org/10.1007/s11709-017-0398-6
  本期目录
The effect of sea level rise on beach morphology of caspian sea coast
M. A. Lashteh NESHAEI1(), F. GHANBARPOUR2
1. Department of Civil Engineering, University of Guilan, Rasht, Iran
2. Department of Civil Engineering, University of Guilan, Rasht, Iran,
 全文: PDF(1295 KB)   HTML
Abstract

Study of beach morphology has been one of the most important issues in coastal engineering research projects. Because of the existence of two important coastal areas located in the north and south parts of the Iran, in the present study an analysis of the coastal zone behaviour is made. Bed level elevations are measured and compared with the theoretical equilibrium profile. It is shown that the behaviour of the coastal zone in the region is consistent with the Dean (1991) equilibrium profile. In the next stage, following extensive investigations, the bed level changes due to arise in sea level at different locations in the surf zone are estimated. The mechanism of beach re-treatment due to a rise in sea level is considered based on the simplified model of Dean (1991) in which the mass balance of the sediments is taken into account. Comparison of the equilibrium profiles for different cases of sea level rise, clearly shows that because of the sediment transport induced by the fluctuation of the water level, the beach profile in the surf zone changes accordingly resulting in an erosion in the inner region of the surf zone and an accumulation of sediments towards the offshore.

Key wordswave    coastal zone    beach morphology    evolution    equilibrium profile    sea level rise
收稿日期: 2015-03-29      出版日期: 2017-11-10
Corresponding Author(s): M. A. Lashteh NESHAEI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(4): 369-379.
M. A. Lashteh NESHAEI, F. GHANBARPOUR. The effect of sea level rise on beach morphology of caspian sea coast. Front. Struct. Civ. Eng., 2017, 11(4): 369-379.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0398-6
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I4/369
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Region D50
(mm)
Specific gravity (ton/m3) Sediment
porosity
(kg/m3)
Water
density
(kg/m3)
Particle fall velocity
(m/s)
Internal
Friction angle
(rad)
Astara 0.53 2.75 0.50 1025 0.0783 0.65
Anzali 0.2 2.71 0.43 1025 0.0265 0.58
Tonkabon 0.33 2.71 0.48 1025 0.0500 0.62
Nour 0.26 2.71 0.46 1025 0.0379 0.47
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Region D 50
(mm)
Seawater intrusion
(m)
Astara 0.53 12
Anzali 0.2 35
Tonkabon 0.33 20
Nour 0.26 25
Tab.2  
Fig.8  
Morphodynamic Sudied Dominant morphodynamic
Mega Nashtarood, Ramsar Erosional highly elevated berms, erosional embayments, long
Moderate Anzali, Sorkhr Erosional moderately elevated berms
Small Miankaleh, Astara, Erosional low elevated berms, short
Tab.3  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Region D 50
(mm)
The maximum rate of erosion
(cm)
Astara 0.53 10.03
Anzali 0.2 18.05
Tonkabon 0.33 12.26
Nour 0.26 16.22
Tab.4  
1 Short A D. Hand Book of Beach and shore face Morphodynamics, JohnWiley, 1999
2 Dean R G. Equilibrium Beach Profiles, Characteristics and Applications. Journal of coastal Research, 1991, 7(1): 53–84.
3 Nairn R B, Southgate  H N. 1993. Deterministic Profile Modelling of Near Shore Processes. Coastal Eng., 1993, 19(1-2): 57–96.
4 Hoque M A, Asano  T, Lashteh Neshaei M A. Effect of Reflective Structures on Undertow Distribution, In: Proceedings of the Fourth International Symposium Waves. California, USA, 2001, 2: 1042–1051.
5 Firoozfar A, Bromhead   E N, Dykes A P ,  Neshaei MAL . Southern Caspian Sea coasts, morphology, sediment characteristics, and sea level change. In: the 27th annual international conference soil, sediments, water and energy, MA,USA, 2001.
6 Holmes P, Balock  T E, Chan  R T C, Neshaei  M A L. Beach Evolution under Random Waves. In: Proceeding of the 25th International Conference on Coastal Engineering, ASCE. Orlando, USA, 1996.
7 Kamphuis J W. Alongshore Sediment Transport Rate. Journal of Waterway, Port, Coastal and Ocean Engineering Div. ASCE, 1999, 117(6): 624–640.
8 NeshaeiM A L, Holmes  P, Salami M G . A semi-empirical model for beach profile evolution in the vicinity of reflective structures. Journal of ocean Engineering, 2009, 36(17-18): 1303–1315.
9 Neshaei M A L ,  Mehrdad M A ,  Veiskarami M . The effect of beach reflection on undertow, Iranian Journal of Science and Technology, Transaction B, Engineering, , 2009, 33(1): 49–60.
10 Abedimahzoon N, Molaabasi  H, Lashteh Neshaei M A, Biklaryyan M . Investigation of undertow in reflective beaches using a GMDH-type neural network. Turkish J. Eng. Env. Sci. TuBitak, 2010, 34: 1–13
11 NeshaeiM A L, Veiskarami  M, Nadimi S . Computation of shoreline change: A transient cross-shore sediment transport approach. International journal of physical science, 2011, 6(24): 5822– 5830.
12 Khoshravan H. Beach sediments, morphodynamics, and risk assessment, Caspian Sea coast, Iran. Quaternary International, 2007, 167(3): 35–39
https://doi.org/10.1016/j.quaint.2007.02.014
13 Kroonenberg S B ,  Abdurakhmanov G M ,  Badyukova E N ,  van der Borg K ,  Kalashnikov A ,  Kasimov N S ,  Rychagov G I ,  Svitoch A A ,  Vonhof H B ,  Wesselingh F P . Solar-forced 2600 BP and Little Ice Age High stands of the Caspian Sea. Quaternary International, 2007, 173(5): 137–143
https://doi.org/10.1016/j.quaint.2007.03.010
14 Rosati J D, Dean  R G, Walton  T L. The modified Bruun Rule extended for landward transport. Marine Geology, 2013, 340: 71–81
https://doi.org/10.1016/j.margeo.2013.04.018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed