Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (1): 215-239   https://doi.org/10.1007/s11709-018-0489-z
  本期目录
Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine
Ali Reza GHANIZADEH1(), Hakime ABBASLOU1, Amir Tavana AMLASHI1, Pourya ALIDOUST2
1. Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
2. Department of Civil Engineering, Iran University of Science & Technology, Tehran, Iran
 全文: PDF(3704 KB)   HTML
Abstract

Plastic concrete is an engineering material, which is commonly used for construction of cut-off walls to prevent water seepage under the dam. This paper aims to explore two machine learning algorithms including artificial neural network (ANN) and support vector machine (SVM) to predict the compressive strength of bentonite/sepiolite plastic concretes. For this purpose, two unique sets of 72 data for compressive strength of bentonite and sepiolite plastic concrete samples (totally 144 data) were prepared by conducting an experimental study. The results confirm the ability of ANN and SVM models in prediction processes. Also, Sensitivity analysis of the best obtained model indicated that cement and silty clay have the maximum and minimum influences on the compressive strength, respectively. In addition, investigation of the effect of measurement error of input variables showed that change in the sand content (amount) and curing time will have the maximum and minimum effects on the output mean absolute percent error (MAPE) of model, respectively. Finally, the influence of different variables on the plastic concrete compressive strength values was evaluated by conducting parametric studies.

Key wordsbentonite/sepiolite plastic concrete    compressive strength    artificial neural network    support vector machine    parametric analysis
收稿日期: 2017-11-04      出版日期: 2019-01-04
Corresponding Author(s): Ali Reza GHANIZADEH   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(1): 215-239.
Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0489-z
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I1/215
Cement SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI* Total
Type II 21.90 5.09 3.90 62.40 1.90 1.83 1.40 98.42
Tab.1  
Clay SiO2 Al2O3 Fe2O3 CaO Na2O K2O MgO TiO2 MnO P2O5 SO3 LOI*
Bentonite 66.37 13.24 2.04 1.79 1.69 0.51 2.37 0.132 0.021 0.019 0.288 10.83
Sepiolite 53.90 0.21 0.01 2.94 0.01 0.01 24.22 0.002 0.001 0.001 0.005 18.21
Tab.2  
Properties Bentonite Sepiolite
Liquid limit (%) 210 166
Plastic limit (%) 105 95
Plasticity index 105 71
Specific gravity 3.05 2.98
Optimum moisture (%) 36 39
Maximum dry density (g ?cm-3) 1.78 1.51
Permeability 1.3 × 10-8 8.1× 10-7
Cation exchangeable capacity (cmol ?kg1) 9 13
Specific surface area (m2g1) 220 180
Main mineral formulae (Al, Mg)2 Ca Na H2O12 (Si, Al)4 Mg8Si12O30(OH)4(H2O)4 .8H2O
Color Gray to light green Cream
Tab.3  
Fig.1  
Fig.2  
No. Gravel
(kg·m-3)
Sand
(kg·m-3)
Silty clay
(kg·m-3)
Cement
(kg·m-3)
Bentonite (kg·m-3) Water
(l·m-3)
Curing time(day) Compressive strength(Mpa)
Mix.1
1 775 775 0 252 28 190.40 7 10.79
2 775 775 0 224 56 212.80 7 9.81
3 775 775 0 196 84 219.67 7 7.85
4 775 775 0 168 112 252 7 5.79
5 775 775 0 140 140 281.04 7 4.02
6 775 775 0 112 168 302.40 7 2.75
7 775 775 0 252 28 190.40 28 12.26
8 775 775 0 224 56 212.80 28 10.69
9 775 775 0 196 84 219.67 28 9.42
10 775 775 0 168 112 252 28 8.14
11 775 775 0 140 140 281.04 28 5.59
12 775 775 0 112 168 302.40 28 3.53
13 775 775 0 252 28 190.40 90 20.99
14 775 775 0 224 56 212.80 90 19.12
15 775 775 0 196 84 219.67 90 13.73
16 775 775 0 168 112 252 90 9.41
17 775 775 0 140 140 281.04 90 7.36
18 775 775 0 112 168 302.40 90 5
Mix.2
19 295 1305 205 252 28 349.72 7 4.41
20 295 1305 205 224 56 361.63 7 3.24
21 295 1305 205 196 84 390.54 7 2.35
22 295 1305 205 168 112 410.78 7 1.57
23 295 1305 205 140 140 429.95 7 1.18
24 295 1305 205 112 168 481.47 7 0.98
25 295 1305 205 252 28 349.72 28 7.36
26 295 1305 205 224 56 361.63 28 5.49
27 295 1305 205 196 84 390.54 28 4.22
28 295 1305 205 168 112 410.78 28 2.84
29 295 1305 205 140 140 429.95 28 2.35
30 295 1305 205 112 168 481.47 28 2.06
31 295 1305 205 252 28 349.72 90 9.81
32 295 1305 205 224 56 361.63 90 7.46
33 295 1305 205 196 84 390.54 90 5.89
34 295 1305 205 168 112 410.78 90 4.41
35 295 1305 205 140 140 429.95 90 3.43
36 295 1305 205 112 168 481.47 90 2.75
Mix.3
37 310 1290 225 180 20 340.48 7 2.26
38 310 1290 225 160 40 356.79 7 1.86
39 310 1290 225 140 60 375.36 7 1.47
40 310 1290 225 120 80 395.78 7 1.08
41 310 1290 225 100 100 405.16 7 0.98
42 310 1290 225 80 120 413.17 7 0.98
*43 310 1290 225 180 20 340.48 28 3.14
44 310 1290 225 160 40 356.79 28 2.75
45 310 1290 225 140 60 375.36 28 2.55
46 310 1290 225 120 80 395.78 28 2.26
47 310 1290 225 100 100 405.16 28 2.16
48 310 1290 225 80 120 413.17 28 2.16
49 310 1290 225 180 20 340.48 90 4.81
50 310 1290 225 160 40 356.79 90 4.51
51 310 1290 225 140 60 375.36 90 3.83
52 310 1290 225 120 80 395.78 90 3.34
53 310 1290 225 100 100 405.16 90 2.65
54 310 1290 225 80 120 413.17 90 2.35
Mix.4
55 875 875 0 162 18 152.10 7 12.75
56 875 875 0 144 36 162 7 8.24
57 875 875 0 126 54 166.67 7 6.08
58 875 875 0 108 72 190.80 7 3.63
59 875 875 0 90 90 220.80 7 2.16
60 875 875 0 72 108 243 7 1.37
61 875 875 0 162 18 152.10 28 14.72
62 875 875 0 144 36 162 28 9.90
63 875 875 0 126 54 166.67 28 6.97
64 875 875 0 108 72 190.80 28 4.71
65 875 875 0 90 90 220.80 28 3.73
66 875 875 0 72 108 243 28 2.35
67 875 875 0 162 18 152.10 90 21.78
68 875 875 0 144 36 162 90 14.91
69 875 875 0 126 54 166.67 90 13.05
70 875 875 0 108 72 190.80 90 8.53
71 875 875 0 90 90 220.80 90 6.67
72 875 875 0 72 108 243 90 3.24
Tab.4  
No. Gravel
(kg·m-3)
Sand
(kg·m-3)
Silty clay
(kg·m-3)
Cement
(kg·m-3)
Sepiolite (kg·m-3) Water
(l·m-3)
Curing time(day) Compressive strength(Mpa)
Mix.1
1 775 775 0 252 28 194.7 7 9.81
2 775 775 0 224 56 238 7 7.75
3 775 775 0 196 84 249.56 7 4.91
4 775 775 0 168 112 252 7 3.24
5 775 775 0 140 140 310 7 1.96
6 775 775 0 112 168 336 7 0.88
7 775 775 0 252 28 194.70 28 10.79
8 775 775 0 224 56 238 28 8.83
9 775 775 0 196 84 249.56 28 6.38
10 775 775 0 168 112 252 28 4.51
11 775 775 0 140 140 310 28 2.84
12 775 775 0 112 168 336 28 1.08
13 775 775 0 252 28 194.70 90 19.62
14 775 775 0 224 56 238 90 14.12
15 775 775 0 196 84 249.56 90 10.99
16 775 775 0 168 112 252 90 8.63
17 775 775 0 140 140 310 90 5.40
18 775 775 0 112 168 336 90 2.06
Mix.2
19 295 1305 205 252 28 374.80 7 3.83
20 295 1305 205 224 56 415.52 7 1.96
21 295 1305 205 196 84 441.50 7 1.37
22 295 1305 205 168 112 502.37 7 0.88
23 295 1305 205 140 140 556.79 7 0.59
24 295 1305 205 112 168 573.06 7 0.39
25 295 1305 205 252 28 374.8 28 6.38
26 295 1305 205 224 56 415.52 28 3.43
27 295 1305 205 196 84 441.50 28 2.16
28 295 1305 205 168 112 502.37 28 1.28
29 295 1305 205 140 140 556.79 28 0.88
30 295 1305 205 112 168 573.06 28 0.59
31 295 1305 205 252 28 374.80 90 9.32
32 295 1305 205 224 56 415.52 90 5.10
33 295 1305 205 196 84 441.50 90 3.43
34 295 1305 205 168 112 502.37 90 1.86
35 295 1305 205 140 140 556.79 90 1.08
36 295 1305 205 112 168 573.06 90 0.78
Mix.3
37 310 1290 225 180 20 348.50 7 2.06
38 310 1290 225 160 40 367.61 7 1.47
39 310 1290 225 140 60 410.42 7 1.08
40 310 1290 225 120 80 433.50 7 0.69
41 310 1290 225 100 100 471.16 7 0.39
42 310 1290 225 80 120 520.93 7 0.29
*43 310 1290 225 180 20 348.50 28 2.55
44 310 1290 225 160 40 367.61 28 1.77
45 310 1290 225 140 60 410.42 28 1.47
46 310 1290 225 120 80 433.50 28 1.08
47 310 1290 225 100 100 471.16 28 0.59
48 310 1290 225 80 120 520.93 28 0.39
49 310 1290 225 180 20 348.50 90 3.92
50 310 1290 225 160 40 367.61 90 3.14
51 310 1290 225 140 60 410.42 90 2.45
52 310 1290 225 120 80 433.50 90 1.37
53 310 1290 225 100 100 471.16 90 0.981
54 310 1290 225 80 120 520.93 90 0.78
Mix.4
55 875 875 0 162 18 160.12 7 10.79
56 875 875 0 144 36 190.80 7 4.90
57 875 875 0 126 54 220.94 7 2.94
58 875 875 0 108 72 237.60 7 1.47
59 875 875 0 90 90 241.13 7 0.98
60 875 875 0 72 108 252 7 0.78
61 875 875 0 162 18 160.12 28 12.75
62 875 875 0 144 36 190.8 28 6.57
63 875 875 0 126 54 220.94 28 4.41
64 875 875 0 108 72 237.60 28 2.06
65 875 875 0 90 90 241.13 28 1.47
66 875 875 0 72 108 252 28 1.08
67 875 875 0 162 18 160.12 90 16.38
68 875 875 0 144 36 190.80 90 6.96
69 875 875 0 126 54 220.94 90 4.81
70 875 875 0 108 72 237.60 90 3.43
71 875 875 0 90 90 241.13 90 2.75
72 875 875 0 72 108 252 90 1.86
Tab.5  
Fig.3  
Fig.4  
Statistical parameter Gravel Sand Silty clay Cement Bentonite Water Curing time Compressive strength
Minimum 295 775 0 72 18 152.1 7 0.98
Maximum 875 1305 225 252 168 481.47 90 21.78
Mean 563.75 1061.25 107.5 152.75 82.25 304.35 41.67 5.98
Standard deviation 265.54 240.62 108.49 50.83 44.19 98.27 35.48 4.8
Median 542.5 1082.5 102.5 142 82 321.44 28 4.32
Tab.6  
Statistical parameter Gravel Sand Silty clay Cement Sepiolite Water Curing time Compressive strength
Minimum 295 775 0 72 18 160.12 7 0.29
Maximum 875 1305 225 252 168 573.06 90 19.62
Mean 563.75 1061.25 107.5 152.75 82.25 345.79 41.67 3.92
Standard deviation 265.54 240.62 108.49 50.83 44.19 122.25 35.48 4.09
Median 542.5 1082.5 102.5 142 82 342.25 28 2.11
Tab.7  
Statistical parameter Gravel Sand Silty clay Cement Bentonit/Sepiolite Water Curing time Clay type Compressive strength
Training dataset (87 data)
Minimum 295 775 0 72 18 152.1 7 0 0.29
Maximum 875 1305 225 252 168 573.06 90 1 21.78
Mean 570.52 1051.90 103.10 154.64 84.67 325.96 40.94 - 5.25
Standard deviation 264.00 242.45 107.56 50.73 46.36 116.86 35.93 - 4.85
Median 775 875 0 144 80 336 28 1 3.43
Testing dataset (43 data)
Minimum 295 775 0 72 18 152.1 7 0 0.39
Maximum 875 1305 225 252 168 573.06 90 1 13.73
Mean 562.21 1069.19 111.39 146.42 79.63 319.11 40.86 - 4.34
Standard deviation 269.18 236.99 110.34 45.89 40.92 103.78 35.63 - 3.59
Median 310 1290 205 140 80 348.5 28 0 3.14
Validating dataset (14 data)
Minimum 295 775 0 72 20 190.4 7 0 0.39
Maximum 875 1305 225 252 140 520.93 90 1 20.99
Mean 526.43 1095 122.86 160.43 75.29 337.86 48.64 - 4.93
Standard deviation 270.54 245.09 110.69 64.57 39.81 117.00 32.46 - 5.46
Median 310 1290 205 164 84 345.1 28 0 2.65
Tab.8  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Model Architecture Training Testing Validating
Number of data R2 RMSE MAD MAPE Number of data R2 RMSE MAD MAPE Number of data R2 RMSE MAD MAPE
ANN-B 7-43-1 43 0.9931 0.4318 0.1912 3.0119 22 0.9906 0.4510 0.1700 2.9039 7 0.8940 0.4249 0.2643 6.4812
ANN-S 7-14-1 43 0.9963 0.2975 0.1584 3.5822 22 0.9836 0.3153 0.1826 5.6276 7 0.9822 0.2811 0.2057 6.9939
ANN-B/S 8-15-1 87 0.9968 0.2757 0.1557 2.9656 43 0.9886 0.3805 0.2332 5.3707 14 0.9989 0.1767 0.1321 2.6817
SVM-B C=39.9964, γ=0.0001, ϵ=0.0001 43 0.9917 0.4883 0.1452 2.2865 22 0.9672 0.8439 0.6156 10.5158 7 0.8069 0.4552 0.4033 9.8887
SVM-S C=16.4245, γ=0.00001, ϵ=0.00001 43 0.9478 1.3699 0.7300 16.5225 22 0.9550 0.6613 0.4288 13.2138 7 0.9860 1.3015 1.0116 34.3914
SVM-B/S C=29.6282, γ=1.9013, ϵ=0.0062 87 0.9885 0.5353 0.1559 2.9696 43 0.9648 0.6744 0.5619 12.9434 14 0.9885 0.7331 0.6057 12.2955
Tab.9  
Equation Input No. Reference R2 RMSE MAD MAPE
CS=0.0981×52.083 ( WaterCement ) 1.4121 2 [17] 0.7358 4.8487 3.4970 58.5077
CS=0.0981×255.2 ((BentoniteCement)×100) 0.9243 2 [17] 0.2857 6.6438 5.0106 83.8309
CS=0.0981×(8.017+0.077×C ur in g time+2.563× ( BentoniteSand)) 3 [12] 0.1324 6.7423 4.8551 81.2312
CS=0.0981×306.7 e 1.35( WaterCement) 2 [18] 0.7502 3.9123 2.9186 48.8309
CS=0.0981×118.5 e 0.10( ( BentoniteCement)×100) 2 [18] 0.2343 6.6932 5.2135 87.2267
ANN-B 7 This paper 0.9918 0.4371 0.1918 3.2108
ANN-B/S 8 This paper 0.9960 0.3014 0.1850 3.0954
SVM-B 7 This paper 0.9839 0.6166 0.3140 5.2537
SVM-B/S 8 This paper 0.9820 0.6907 0.3691 6.1760
Tab.10  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
1 T WKahl, J L Kauschinger, E B Perry. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Plastic Concrete Cutoff Walls for Earth Dams, DTIC Document, 1991.
2 LMHu, DY Gao, YZLi, SQSong. Analysis of the Influence of Long Curing Age on the Compressive Strength of Plastic Concrete。 Advanced Materials Research, Trans Tech Publ, 2012, pp. 200–203.
3 PZhang, Q Y Guan, Q F Li. Mechanical Properties of Plastic Concrete Containing Bentonite, Research Journal of Applied Sciences. Engineering and Technology, 2013, 5(4): 1317–1322
4 YYu, J Pu, KUgai. Study of mechanical properties of soil-cement mixture for a cut-off wall. Soil and Foundation, 1997, 37(4): 93–103
https://doi.org/10.3208/sandf.37.4_93
5 ICOLD. Filling materials for watertight cut off walls. Bulletin, International Committee of Large Dams, Paris, France, 1995.
6 S LGarvin, C S Hayles. The chemical compatibility of cement–bentonite cut-off wall material. Construction & Building Materials, 1999, 13(6): 329–341
https://doi.org/10.1016/S0950-0618(99)00024-0
7 DKoch. Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Applied Clay Science, 2002, 21(1-2): 1–11
https://doi.org/10.1016/S0169-1317(01)00087-4
8 A AAta, T N Salem, N M Elkhawas. Properties of soil–bentonite–cement bypass mixture for cutoff walls. Construction & Building Materials, 2015, 93: 950–956
https://doi.org/10.1016/j.conbuildmat.2015.05.064
9 J LGarcía-Siñeriz, M VVillar, MRey, B Palacios. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation. Engineering Geology, 2015, 192: 33–45
https://doi.org/10.1016/j.enggeo.2015.04.002
10 GKarunaratne, S Chew, SLee, ASinha. Bentonite: kaolinite clay liner. Geosynthetics International, 2001, 8(2): 113–133
https://doi.org/10.1680/gein.8.0189
11 E IStavridakis. Presentation and assessment of clay influence on engineering parameters of cement treated clayey mixtures. Electronic Journal of Geotechnical Engineering, 2005, paper NO.: 508
12 ATahershamsi, A Bakhtiary, NBinazadeh. Effects of clay mineral type and content on compressive strength of plastic concrete. Iranian Journal of Mining Engineering, 2009, 4(7): 35–42
13 ASinger, W Kirsten, CBühmann. Fibrous clay minerals in the soils of Namaqualand, South Africa: characteristics and formation. Geoderma, 1995, 66(1-2): 43–70
https://doi.org/10.1016/0016-7061(94)00052-C
14 HYalçin, Ö Bozkaya. Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 1995, 43(6): 705–717
https://doi.org/10.1346/CCMN.1995.0430607
15 AAkbulut, S Kadir. The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey. Clays and Clay Minerals, 2003, 51(3): 279–292
https://doi.org/10.1346/CCMN.2003.0510304
16 HAbbaslou, A R Ghanizadeh, A T Amlashi. The compatibility of bentonite/sepiolite plastic concrete cut-off wall material. Construction & Building Materials, 2016, 124: 1165–1173
https://doi.org/10.1016/j.conbuildmat.2016.08.116
17 APashazadeh, M Chekaniazar. Estimating an Appropriate Plastic Concrete Mixing Design for Cutoff Walls to Control Leakage under the Earth Dam. Journal of Basic and Applied Scientific Research, 2011, 1(9): 1295–1299
18 SBahrami, A A Dezfouli, M Oulapour. Selection of the most suitable plastic concrete mix design using a multi-criteria decision-making approach. First Iranian National Conference on Civil Engineering and Sustainable Development Mehrarvand institute of technology, IRAN, 2015
19 N NEldin, A B Senouci. Measurement and prediction of the strength of rubberized concrete. Cement and Concrete Composites, 1994, 16(4): 287–298
https://doi.org/10.1016/0958-9465(94)90041-8
20 M HFazel Zarandi, I BTürksen, JSobhani, A ARamezanianpour. Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 2008, 8(1): 488–498
https://doi.org/10.1016/j.asoc.2007.02.010
21 D KKim, J J Lee, J H Lee, S K Chang. Application of Probabilistic Neural Networks for Prediction of Concrete Strength. Journal of Materials in Civil Engineering, 2005, 17(3): 353–362
https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(353)
22 J JLee, D Kim, S KChang, C F MNocete. An improved application technique of the adaptive probabilistic neural network for predicting concrete strength. Computational Materials Science, 2009, 44(3): 988–998
https://doi.org/10.1016/j.commatsci.2008.07.012
23 RMadandoust, R Ghavidel, NNariman Zadeh. Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV. Computational Materials Science, 2010, 49(3): 556–567
https://doi.org/10.1016/j.commatsci.2010.05.050
24 RMadandoust, J H Bungey, R Ghavidel. Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Computational Materials Science, 2012, 51(1): 261–272
https://doi.org/10.1016/j.commatsci.2011.07.053
25 CBilim, C D Atiş, H Tanyildizi, OKarahan. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Advances in Engineering Software, 2009, 40(5): 334–340
https://doi.org/10.1016/j.advengsoft.2008.05.005
26 PChopra, R K Sharma, M Kumar. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Advances in Materials Science and Engineering, 2016, (2): 1–10
27 A T ADantas, MBatista Leite, Kde Jesus Nagahama. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Construction & Building Materials, 2013, 38: 717–722
https://doi.org/10.1016/j.conbuildmat.2012.09.026
28 Z HDuan, S C Kou, C S Poon. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction & Building Materials, 2013, 40: 1200–1206
https://doi.org/10.1016/j.conbuildmat.2012.04.063
29 HNaderpour, A Kheyroddin, G GAmiri. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 2010, 92(12): 2817–2829
https://doi.org/10.1016/j.compstruct.2010.04.008
30 MSarıdemir. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Advances in Engineering Software, 2009, 40(5): 350–355
https://doi.org/10.1016/j.advengsoft.2008.05.002
31 RSiddique, P Aggarwal, YAggarwal. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Advances in Engineering Software, 2011, 42(10): 780–786
https://doi.org/10.1016/j.advengsoft.2011.05.016
32 MUysal, H Tanyildizi. Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network. Construction & Building Materials, 2011, 25(11): 4105–4111
https://doi.org/10.1016/j.conbuildmat.2010.11.108
33 S SGilan, A M Ali, A Ramezanianpour. Evolutionary Fuzzy Function with Support Vector Regression for the Prediction of Concrete Compressive Strength. Fifth UK Sim European Symposium on Computer Modeling and Simulation (EMS), 2011, 263–268.
34 M YCheng, J S Chou, A F Roy, Y W Wu. High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model. Automation in Construction, 2012, 28: 106–115
https://doi.org/10.1016/j.autcon.2012.07.004
35 JSobhani, M Khanzadi, AMovahedian. Support vector machine for prediction of the compressive strength of no-slump concrete. Computers and Concrete, 2013, 11(4): 337–350
https://doi.org/10.12989/cac.2013.11.4.337
36 A MAbd, S M Abd. Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Studies in Construction Materials, 2017, 6: 8–15
https://doi.org/10.1016/j.cscm.2016.11.002
37 R AMozumder, B Roy, A ILaskar. Support Vector Regression Approach to Predict the Strength of FRP Confined Concrete. Arabian Journal for Science and Engineering, 2017, 42(3): 1129–1146
https://doi.org/10.1007/s13369-016-2340-y
38 K MHamdia, T Lahmer, TNguyen-Thoi, TRabczuk. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science, 2015, 102: 304–313
https://doi.org/10.1016/j.commatsci.2015.02.045
39 S SHaykin. Neural networks: a comprehensive foundation. Tsinghua University Press, 2001
40 J AFreeman, D M Skapura. Neural Networks: Algorithms, Applications and Programming Techniques, Addison-Wesley Publishing Company, 1992
41 PWerbos. Beyond regression: new tools for prediction and analysis in the behavioral sciences(PHD Dissertation). Harvard University, Cambridge, 1974
42 D ERumelhart, G EHinton, R JWilliams. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533–536
https://doi.org/10.1038/323533a0
43 VVapnik, S E Golowich, A Smola. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 1997, 9: 281–287
44 V NVapnik, V Vapnik. Statistical learning theory, Wiley New York, 1998
45 KLevenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 1944, 2(2): 164–168
https://doi.org/10.1090/qam/10666
46 D WMarquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441
https://doi.org/10.1137/0111030
47 YYang, Q Zhang. A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering, 1997, 30(4): 207–222
https://doi.org/10.1007/BF01045717
48 MNaderi. Effect of different constituent materials on the properties of plastic concrete. International Journal of Civil Engineering, 2005, 3(1): 10–19
49 Y PPisheh, S M M Hosseini. Stress-strain behavior of plastic concrete using monotonic triaxial compression tests. Journal of Central South University, 2012, 19(4): 1125–1131
https://doi.org/10.1007/s11771-012-1118-y
50 QYGuan, P Zhang. Effect of Clay Dosage on Mechanical Properties of Plastic Concrete. Advanced Materials Research, Trans Tech Publ, 2011, pp. 664–667
51 AMahboubi, M Anari. Effects of Mixing Proportions and Sample Age on Mechanical Properties of Plastic Concrete; An Experimental Study. 1st International Conference on Concrete Technology, Tabriz, Iran, 2009
52 N SApebo, A J Shiwua, A Agbo, JEzeokonkwo, PAdeke. Effect of Water-Cement Ratio on the Compressive Strength of gravel-crushed over burnt bricks concrete. Civ Environ Res, 2013, 3: 74–81
53 ANeville. Properties of Concrete. Fourth and Final Edition Standards, Pearson, Prentice Hall, ISBN 0-582-23070-5, OCLC, 1996
54 DYGao, SQ Song, LMHu, Relationships of strengths and dimensional effect of plastic concrete, Advanced Materials Research, Trans Tech Publ, 2011, pp. 1029–1037
55 LMHu, XL Lv, DYGao, KBYan, SQ Song. Analysis of the Influence of Clay Dosage and Curing Age on the Strength of Plastic Concrete. Advanced Materials Research, Trans Tech Publ, 2014, pp. 1433–1437.
56 NVu-Bac, T Lahmer, HKeitel, JZhao, X Zhuang, TRabczuk. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
https://doi.org/10.1016/j.mechmat.2013.07.021
57 NVu-Bac, T Lahmer, YZhang, XZhuang, TRabczuk. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
58 NVu-Bac, R Rafiee, XZhuang, TLahmer, TRabczuk. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
59 NVu-Bac, M Silani, TLahmer, XZhuang, TRabczuk. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
https://doi.org/10.1016/j.commatsci.2014.04.066
60 NVu-Bac, T Lahmer, XZhuang, TNguyen-Thoi, TRabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
61 K MHamdia, M Silani, XZhuang, PHe, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, (3): 1–13
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed