Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2020, Vol. 8 Issue (1): 43-50   https://doi.org/10.1007/s40484-020-0195-4
  本期目录
ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor
Jingxue Xin1,6,7, Junjun Hao2, Lang Chen1, Tao Zhang3, Lei Li1,5,7, Luonan Chen3,5, Wenmin Zhao4, Xuemei Lu2,5, Peng Shi2,5(), Yong Wang1,5,7()
1. CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2. State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
3. Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
4. Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
5. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
6. Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA
7. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(888 KB)   HTML
Abstract

Background: Plateau zokor inhabits in sealed burrows from 2,000 to 4,200 meters at Qinghai-Tibet Plateau. This extreme living environment makes it a great model to study animal adaptation to hypoxia, low temperature, and high carbon dioxide concentration.

Methods: We provide an integrated resource, ZokorDB, for tissue specific regulatory network annotation for zokor. ZokorDB is based on a high-quality draft genome of a plateau zokor at 3,300 m and its transcriptional profiles in brain, heart, liver, kidney, and lung. The conserved non-coding elements of zokor are annotated by their nearest genes and upstream transcriptional factor motif binding sites.

Results: ZokorDB provides a general draft gene regulatory network (GRN), i.e., potential transcription factor (TF) binds to non-coding regulatory elements and regulates the expression of target genes (TG). Furthermore, we refined the GRN by incorporating matched RNA-seq and DNase-seq data from mouse ENCODE project and reconstructed five tissue-specific regulatory networks.

Conclusions: A web-based, open-access database is developed for easily searching, visualizing, and downloading the annotation and data. The pipeline of non-coding region annotation for zokor will be useful for other non-model species. ZokorDB is free available at the website (bigd.big.ac.cn/zokordb/).

Key wordstissue specific regulatory network    non-coding element    plateau zokor    non-model species
收稿日期: 2019-09-04      出版日期: 2020-03-23
Corresponding Author(s): Peng Shi,Yong Wang   
 引用本文:   
. [J]. Quantitative Biology, 2020, 8(1): 43-50.
Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang. ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor. Quant. Biol., 2020, 8(1): 43-50.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-020-0195-4
https://academic.hep.com.cn/qb/CN/Y2020/V8/I1/43
Tissue Number of tissue-specific genes
Brain 14,764
Heart 13,392
Kidney 13,849
Liver 13,045
Lung 14,410
Tab.1  
Fig.1  
Tissue Number of TFs Number of REs Number of TGs Number of TF-RE-TG triplets
Brain 517 2,967 877 117,645
Heart 418 2,855 825 100,858
Kidney 446 2,948 858 111,869
Liver 387 2,831 814 93,530
Lung 452 2,964 863 225,747
Tab.2  
Fig.2  
1 N. Fan, and Y. Shi, (1982) A revision of the zokors of subgenus Eospalax. Acta Theriol. Sin., 2, 183–199, in Chinese
2 N. Fan, and S. Gu, (1981) The structure of the tunnel system of the Chinese zokor. Acta Theriol. Sin., 1, 67–71, In Chinese
3 J. Zeng, , Z. Wang, and Z. Shi, (1984) Metabolic characteristics and some physiological parameters of the mole rat (Myospalax baileyi) in an alpine area. Acta Biol. Plat. Sin., 3, 163–171
4 B. K. Mcnab, (1984) The metabolism of fossorial rodents: a study of convergence. Ecology, 47, 712–733
5 O. Reichman,, S.C. Smith, (1990) Burrows and burrowing behavior by mammals.Curr. Mammal., 2,197–244
6 Y. M. Zhang, and J. Liu, (2003) Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. J. Mammal., 84, 644–651
https://doi.org/10.1644/1545-1542(2003)084<0644:EOPZMF>2.0.CO;2
7 Y. Shao, , J. X. Li, , R. L. Ge, , L. Zhong, , D. M. Irwin, , R. W. Murphy, and Y. P. Zhang, (2015) Genetic adaptations of the plateau zokor in high-elevation burrows. Sci. Rep., 5, 17262
https://doi.org/10.1038/srep17262 pmid: 26602147
8 R. C. Hardison, (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet., 16, 369–372
https://doi.org/10.1016/S0168-9525(00)02081-3 pmid: 10973062
9 The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
https://doi.org/10.1038/nature11247 pmid: 22955616
10 F. Yue, , Y. Cheng, , A. Breschi, , J. Vierstra, , W. Wu, , T. Ryba, , R. Sandstrom, , Z. Ma, , C. Davis, , B. D. Pope, , et al. (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364
https://doi.org/10.1038/nature13992 pmid: 25409824
11 C. Trapnell, , B. A. Williams, , G. Pertea, , A. Mortazavi, , G. Kwan, , M. J. van Baren, , S. L. Salzberg, , B. J. Wold, and L. Pachter, (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
https://doi.org/10.1038/nbt.1621 pmid: 20436464
12 Z. Duren, , X. Chen, , R. Jiang, , Y. Wang, and W. H. Wong, (2017) Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci. USA, 114, E4914–E4923
https://doi.org/10.1073/pnas.1704553114 pmid: 28576882
13 J. Butler, , I. MacCallum, , M. Kleber, , I. A. Shlyakhter, , M. K. Belmonte, , E. S. Lander, , C. Nusbaum, and D. B. Jaffe, (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res., 18, 810–820
https://doi.org/10.1101/gr.7337908 pmid: 18340039
14 Y. X. He, , X. B. Qi, , Ouzhuluobu, , S. Liu, , J. Li, , H. Zhang, , Baimakangzhuo, C. Bai, , , W. Zheng, Y. Guo, , et al. (2018) Blunted nitric oxide regulation in Tibetans under high-altitude hypoxia. Natl. Sci. Rev., 5, 516–529
https://doi.org/10.1093/nsr/nwy037
15 C. Burge, and S. Karlin, (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268, 78–94
https://doi.org/10.1006/jmbi.1997.0951 pmid: 9149143
16 M. Stanke, , R. Steinkamp, , S. Waack, and B. Morgenstern, (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res., 32, W309–W312
https://doi.org/10.1093/nar/gkh379 pmid: 15215400
17 T. D. Wu, and C. K. Watanabe, (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21, 1859–1875
https://doi.org/10.1093/bioinformatics/bti310 pmid: 15728110
18 S. Heinz, , C. Benner, , N. Spann, , E. Bertolino, , Y. C. Lin, , P. Laslo, , J. X. Cheng, , C. Murre, , H. Singh, and C. K. Glass, (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
https://doi.org/10.1016/j.molcel.2010.05.004 pmid: 20513432
19 Z. P. Liu, , C. Wu, , H. Miao, , H Wu, . (2015) RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015, bav095
20 C. T. Lopes, , M. Franz, , F. Kazi, , S. L. Donaldson, , Q. Morris, and G. D. Bader, (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics, 26, 2347–2348
https://doi.org/10.1093/bioinformatics/btq430 pmid: 20656902
21 The modENCODE Consortium. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 33, 1787–1797
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed