Please wait a minute...
转化医学研究
“中国核心期刊(遴选)数据库”收录期刊
“万方数据—数字化期刊群”全文入网期刊
“中国学术期刊网络出版总库”及CNKI系列数据库收录期刊
“中文科技期刊数据库”收录期刊
转化医学研究  2012, Vol. 2 Issue (1): 20-33   https://doi.org/10.3868/j.issn.2095-154x.2012.01.003
  专论 本期目录
脂联素-一种治疗心血管损伤的新靶点
刘慧荣1,王雅静2,王晓樑2,马新亮1,2*
1. 首都医科大学心血管病转化医学研究中心, 北京 100069
2. 托马斯杰弗逊大学急症医学系, 费城 PA 19107, 美国
脂联素-一种治疗心血管损伤的新靶点
 全文: PDF(5856 KB)  
出版日期: 2015-04-22
 引用本文:   
刘慧荣,王雅静,王晓樑,马新亮. 脂联素-一种治疗心血管损伤的新靶点[J]. 转化医学研究, 2012, 2(1): 20-33.
 链接本文:  
https://academic.hep.com.cn/tmr/CN/Y2012/V2/I1/20
[1] Hayden MR, Tyagi SC. Myocardial redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and congestive heart failure. Med Sci Monit,2003,9(7):SR35-SR52.
[2] Lim HS, MacFadyen RJ, Lip GY. Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch Intern Med,2004,164(16):1737-1748.
[3] Schaffer SW, Croft CB, Solodushko V. Cardioprotective effect of chronic hyperglycemia: effect on hypoxia-induced apoptosis and necrosis. Am J Physiol Heart Circ Physiol,2000,278(6):H1948-H1954.
[4] Bagi Z, Koller A, Kaley G. Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol,2003,285(4):H1404-H1410.
[5] Yano M, Hasegawa G, Ishii M, et al. Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells: implication for the oxidative stress associated with postprandial hyperglycemia. Redox Rep,2004,9(2):111-116.
[6] Brodsky SV, Gao S, Li H, et al. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am J Physiol Heart Circ Physiol,2002,283(5):H2130-H2139.
[7] Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest, 2001, 108(9):1341-1348.
[8] Powell LA, Warpeha KM, Xu W, et al. High glucose decreases intracellular glutathione concentrations and upregulates inducible nitric oxide synthase gene expression in intestinal epithelial cells. J Mol Endocrinol, 2004,33(3):797-803.
[9] Du X, Stocklauser-Farber K, Rosen P. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic Biol Med,1999,27(7-8):752-763.
[10] Cosentino F, Hishikawa K, Katusic ZS, et al. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation,1997,96(1):25-28.
[11] Li H, Gutterman DD, Rusch NJ, et al. Nitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose. Diabetes,2004,53(9):2436-2442.
[12] Zou MH, Shi C, Cohen RA. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes,2002,51(1):198-203.
[13] Marfella R, D'Amico M, Di Filippo C, et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia, 2002,45(8):1172-1181.
[14] Forrat R, Sebbag L, Wiernsperger N, et al. Acute myocardial infarction in dogs with experimental diabetes. Cardiovasc Res,1993,27(11):1908-1912.
[15] Jagasia D, McNulty PH. Diabetes mellitus and heart failure. Congest Heart Fail,2003,9(3):133-139.
[16] Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab,2002,13(2):84-89.
[17] Chandran M, Phillips SA, Ciaraldi T, et al. Adiponectin: more than Just another fat cell hormone? Diabetes Care,2003,26(8):2442-2450.
[18] Hug C, Lodish HF. The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol,2005,5(2):129-134.
[19] Fruebis J, Tsao TS, Javorschi S,et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. PNAS,2001,98(4):2005-2010.
[20] Waki H, Yamauchi T, Kamon J, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology,2005,146(2):790-796.
[21] Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature,2003,423(6941):762-769.
[22] Mao X, Kikani CK, RioJas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol,2006,8(5):518-523.
[23] Hug C, Wang J, Ahmad NS, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. PNAS,2004,101(28):10308-10313.
[24] Kumada M, Kihara S, SumitsuJi S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol,2003,23(1):85-89.
[25] Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol,2000,20(6):1595-1599.
[26] Goldstein BJ, Scalia R. Adipokines and vascular disease in diabetes. Curr Diab Rep,2007,7(1):25-33.
[27] Zhu W, Cheng KK, Vanhoutte PM, et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci (Lond), 2008,114(5):361-374.
[28] Zietz B, Herfarth H, Paul G, et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett, 2003,545(2-3):103-104.
[29] Tschritter O, Fritsche A, Thamer C,et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes,2003,52(2):239-243.
[30] Pischon T, Girman CJ, Hotamisligil GS, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA,2004,291(14):1730-1737.
[31] Frystyk J, Berne C, Berglund L, et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men. J Clin Endocrinol Metab, 2007,92(2):571-576.
[32] Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem,2002,277(29):25863-25866.
[33] Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis- the missing link of adipo-vascular axis. J Biol Chem,2002,277(40):37487-37491.
[34] Okamoto Y, Kihara S, Ouchi N,et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation,2002,106(22):2767-2770.
[35] Yamauchi T, Kamon J, Waki H,et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem,2003,278(4):2461-2468.
[36] Behrends M, Schulz R, Post H, et al. Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol, 2000,279(3):1111-1119.
[37] Shibata R, Numaguchi Y, Matsushita K, et al. Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction. Am J Cardiol,2008,101(12):1712-1715.
[38] Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion inJury through AMPK- and COX-2-dependent mechanisms. Nat Med,2005,11(10):1096-1103.
[39] Tao L, Gao E, Jiao X, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation,2007,115(11):1408-1416.
[40] Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab, 2007, 9(3):282-289.
[41] Ouchi N, Shibata R, Walsh K. Targeting adiponectin for cardioprotection. Expert Opin Ther Targets, 2006,10(4):573-581.
[42] Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest,2006,116(7):1784-1792.
[43] Tsao TS, Tomas E, Murrey HE, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem, 2003,278(51):50810-50817.
[44] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med,2001,7(8):941-946.
[45] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med,2002,8(11):1288-1295.
[46] PaJvani UB, Du X, Combs TP, et al. Structure-Function Studies of the Adipocyte-secreted Hormone Acrp30/Adiponectin. IMPLICATIONS FOR METABOLIC REGULATION AND BIOACTIVITY. J Biol Chem, 2003,278(11):9073-9085.
[47] Fisher FF, TruJillo ME, Hanif W, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia, 2005, 48(6):1084-1087.
[48] Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta, 2007,380(1):24-30.
[49] Rakatzi I, Mueller H, Ritzeler O, et al. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia, 2004, 47(2):249-258.
[50] Neumeier M, Weigert J, Schaffler A, et al. Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol, 2006, 79(4):803-808.
[51] Kadowaki T, Yamauchi T. Adiponectin and Adiponectin Receptors. Endocr Rev, 2005, 26(3):439-451.
[52] Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med, 2007, 13(3):332-339.
[53] Liu Y, Michael MD, Kash S, et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology, 2007, 148(2):683-692.
[54] Capeau J. The story of adiponectin and its receptors AdipoR1 and R2: To follow. J Hepatol,2007,47(5):736-738.
[55] BJursell M, Ahnmark A, Bohlooly Y, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes,2007,56(3):583-593.
[56] Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology,2003,144(12):5179-5183.
[57] Bruce CR, Mertz VA, Heigenhauser GJ, et al. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subJects. Diabetes, 2005,54(11):3154-3160.
[58] Hattori Y, Nakano Y, Hattori S, et al. High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-kappaB activation in vascular endothelial cells. FEBS Lett,2008,582(12):1719-1724.
[59] Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem, 2004,279(2):1304-1309.
[60] Shibata R, Ouchi N, Kihara S, et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J Biol Chem,2004,279(27):28670-28674.
[61] Dyck JRB. The ischemic heart: starving to stimulate the adiponectin-AMPK signaling axis. Circulation, 2007,116(24):2779-2781.
[62] Shinmura K, Tamaki K, Saito K, et al. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation,2007,116(24):2809-2817.
[63] Gonon AT, Widegren U, Bulhak A,et al. Adiponectin protects against myocardial ischaemia-reperfusion inJury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc Res,2008,78(1):116-122.
[64] Lafon-Cazal M, Culcasi M, Gaven F,et al. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology,1993,32(11):1259-1266.
[65] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol,1996, 271(5 pt 1):C1424-1437
[66] Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion inJury and preconditioning. Br J Pharmacol,2003,138(4):532-543.
[67] Xing Y, Musi N, FuJii N, et al. Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative {alpha}2 subunit of AMP-activated protein kinase. J Biol Chem, 2003,278(31):28372-28377.
[68] Wang Y, Gao E, Tao L, et al. AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion inJury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation,2009,119(6):835-844.
[69] Chen H, Montagnani M, Funahashi T, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem,2003,278(45):45021-45026.
[70] Motoshima H, Wu X, Mahadev K, et al. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun, 2004,315(2):264-271.
[71] Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature,1999,399(6720):597-601.
[72] Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev,2007,87(1):245-313.
[73] Ouedraogo R, Wu X, Xu SQ,et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes, 2006,55(6):1840-1846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed