Please wait a minute...
转化医学研究
“中国核心期刊(遴选)数据库”收录期刊
“万方数据—数字化期刊群”全文入网期刊
“中国学术期刊网络出版总库”及CNKI系列数据库收录期刊
“中文科技期刊数据库”收录期刊
转化医学研究  2012, Vol. 2 Issue (1): 40-53   https://doi.org/10.3868/j.issn.2095-154x.2012.01.005
  综述 本期目录
神经保护和缺血性脑卒中治疗
黄隽波,王以政*
中国科学院上海生命科学研究院, 神经科学研究所, 国家重点实验室, 神经信号转导组, 上海 200031
神经保护和缺血性脑卒中治疗
 全文: PDF(1089 KB)  
摘要:缺血性脑卒中严重危害人类健康, 迫切需要有效的药物及治疗方法。神经保护治疗脑卒中, 可能是有希望的治疗脑卒中策略之一。在过去的几十年间, 研究者对脑缺血的神经病理及分子细胞机制已经有了较为深入的了解, 发现了很多缺血后神经元中特异性的病理通路及其相关分子, 并一直致力于找到能够用于脑卒中治疗的药物靶点。但是这些研究至今很少能转化为用于临床治疗的成果。本文针对近年来神经保护策略及遇到的困难, 主要讨论中风研究和治疗的转化医学研究。
关键词 卒中治疗神经保护策略兴奋性神经毒    
出版日期: 2012-05-23
 引用本文:   
黄隽波,王以政*. 神经保护和缺血性脑卒中治疗[J]. 转化医学研究, 2012, 2(1): 40-53.
 链接本文:  
https://academic.hep.com.cn/tmr/CN/Y2012/V2/I1/40
[1] Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology, 2008,55(3): 250-256.
[2] Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med, 2008,359(13): 1317-1329.
[3] Shobha N, Buchan AM, Hill MD. Thrombolysis at 3-4.5 hours after acute ischemic stroke onset--evidence from the Canadian Alteplase for Stroke Effectiveness Study (CASES) registry. Cerebrovasc Dis,2011, 31(3): 223-228.
[4] Garcia JH. Experimental ischemic stroke: a review. Stroke, 1984,15(1): 5-14.
[5] Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke, 2002, 33(8): 2123-2136.
[6] Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke, 2004, 35(2): 354-356.
[7] Lo EH, Wang X, Cuzner ML. Extracellular proteolysis in brain inJury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res, 2002, 69(1): 1-9.
[8] The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke, 1997, 28(11): 2109-2118.
[9] Nicole O, Docagne F, Ali C. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med, 2001, 7(1): 59-64.
[10] Lipton P. Ischemic cell death in brain neurons. Physiol Rev, 1999, 79(4): 1431-1568.
[11] Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Ann Neurol, 1986,19(2): 105-111.
[12] Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci, 1992, 12(5): 1882-1895.
[13] SiesJo BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab, 1989. 9(2): 127-140.
[14] Meyer FB. Calcium, neuronal hyperexcitability and ischemic inJury. Brain Res Brain Res Rev, 1989. 14(3): 227-243.
[15] Schanne FA, Kane AB, Young EE, et al., Calcium dependence of toxic cell death: a final common pathway. Science, 1979,206(4419): 700-702.
[16] Dubinsky JM, Rothman SM. Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal inJury. J Neurosci, 1991, 11(8): 2545-2551.
[17] Tymianski M,  Charlton MP, Carlen PL,  et al., Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci, 1993,13(5): 2085-2104.
[18] Manev H, Favaron M, Guidotti A, et al., Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol, 1989,36(1): 106-112.
[19] Ogura A, Miyamoto M, Kudo Y. Neuronal death in vitro: parallelism between survivability of hippocampal neurones and sustained elevation of cytosolic Ca2+ after exposure to glutamate receptor agonist. Exp Brain Res, 1988,73(3): 447-458.
[20] Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 1999, 22(9): 391-397.
[21]Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium,2010, 47(2): 122-129.
[22] Marshall JW, Cummings RM, Bowes IA. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke, 2003,34(9): 2228-2233.
[23] Marshall JW, Duffin KJ, Green AR, et al., NXY-059, a free radical--trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke, 2001, 32(1): 190-198.
[24] Lees KR, Zivin JA, Ashwood T, et al., NXY-059 for acute ischemic stroke. N Engl J Med, 2006,354(6): 588-600.
[25] Diener HC, Lees KR, Lyden P, et al., NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke, 2008,39(6): 1751-1758.
[26] Shuaib A,  Lees KR, Lyden P, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med, 2007, 357(6): 562-571.
[27] Longa EZ, Weinstein P R, Carlson S. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989,20(1): 84-91.
[28] Peeling J, Corbett D, Del Bigio MR, et al. Rat middle cerebral artery occlusion: correlations between histopathology, T2-weighted magnetic resonance imaging, and behavioral indices. J Stroke Cerebrovasc Dis, 2001,10(4): 166-177.
[29] Saver JL, Johnston KC, Homer D. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS investigators. Stroke, 1999. 30(2): 293-298.
[30] Cook DJ, Tymianski M. Translating promising preclinical neuroprotective therapies to human stroke trials. Expert Rev Cardiovasc Ther,2011, 9(4): 433-449.
[31] Corbett D, Thornhill J. Temperature modulation (hypothermic and hyperthermic conditions) and its influence on histological and behavioral outcomes following cerebral ischemia. Brain Pathol, 2000, 10(1): 145-152.
[32] Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab, 2008,28(12): 1877-1891.
[33] Tymianski M. Can molecular and cellular neuroprotection be translated into therapies for patients?: yes, but not the way we tried it before. Stroke. 2010,41(10 Suppl): S87-90.
[34] Aarts M, Iihara K, Wei WL, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell, 2003,115(7): 863-877.
[35] Sun HS,   Jackson MF, Martin LJ, et al., Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci, 2009,12(10): 1300-1307.
[36] Du W, Huang JB, Yao HL, et al. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest, 2010,120(10): 3480-3492.
[37] Fisher M, Feuerstein G, Howells DW, et al., Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke, 2009,40(6): 2244-2250.
[38] Macleod MR, Fisher M, O'CollinsV, et al. Good laboratory practice: preventing introduction of bias at the bench. Stroke, 2009,40(3): e50-52.
[39] Del Zoppo GJ, Copeland BR, Waltx TA. The beneficial effect of intracarotid urokinase on acute stroke in a baboon model. Stroke, 1986,17(4): 638-643.
[40] Roitberg B, Khan N, Tuccar E. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. Neurol Res, 2003, 25(1): 68-78.
[41] Hand PJ,  Wardlaw JM, Rivers CS, et al. MR diffusion-weighted imaging and outcome prediction after ischemic stroke. Neurology, 2006,66(8): 1159-1163.
[42] Cerqueira MD, Maynard C, Ritchie JL. Radionuclide assessment of infarct size and left ventricular function in clinical trials of thrombolysis. Circulation, 1991, 84(3 Suppl): I100-1108.
[43] Sattler R,  Xiong Z, Lu WY, et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 1999. 284(5421): 1845-1848.
[44] Aarts M, Liu Y, Liu L, et al., Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 2002, 298(5594): 846-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed