Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Frontiers of Agriculture in China  0, Vol. Issue (): 337-345   https://doi.org/10.1007/s11703-009-0034-x
  RESEARCH ARTICLE 本期目录
Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers
Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers
Xuemei HUO, Hongwei HAN, Jun ZHANG, Minsheng YANG()
College of Forestry, Agricultural University of Hebei, Baoding 071001, China
 全文: PDF(191 KB)   HTML
Abstract

The genetic diversity of ten Robinia pseudoacacia L. populations collected from China was analyzed by amplified fragment length polymorphism (AFLP) technique using ten primer combinations. A total of 752 amplified bands were obtained, among which 352 (46.8%) were polymorphic. At species level, the percentage of polymorphic loci (P) was 49.87%, the Shannon’s information index (I) was 0.2160, and the mean Nei’s gene diversity index (H) was 0.1403. At population level, P=25.47%, I=0.1381, and H=0.0927. The genetic diversity within populations was higher than that among populations. The coefficient of gene differentiation among populations within species (Gst) was 0.390, which indicated that gene differentiation was mainly within the population, and between populations, it accounted for 33.90% of the total variation. Gene flow (Nm) between the populations was 0.975, suggesting that the gene exchange between populations was small. The UPGMA cluster analysis showed that the ten populations were divided into three major groups, and most individuals from the same population were clustered together. There was no significant correlation between the genetic diversity parameters (D, IN, P, Ne, H, and I) and geographic and climatic factors (longitude, latitude, annual mean temperature, and annual mean precipitation). The results provide useful information about the level of genetic diversity, and it has a wide application prospect in Robinia pseudoacacia L. utilization and breeding in China.

Key wordsamplified fragment length polymorphism (AFLP)    genetic diversity    genetic structure    population    Robinia pseudocacia L.
收稿日期: 2008-10-01      出版日期: 2009-09-05
Corresponding Author(s): YANG Minsheng,Email:Deu100@yahoo.com.cn   
 引用本文:   
. Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers[J]. Frontiers of Agriculture in China, 0, (): 337-345.
Xuemei HUO, Hongwei HAN, Jun ZHANG, Minsheng YANG. Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers. Front Agric Chin, 0, (): 337-345.
 链接本文:  
https://academic.hep.com.cn/fag/CN/10.1007/s11703-009-0034-x
https://academic.hep.com.cn/fag/CN/Y0/V/I/337
Fig.1  
no.seed sourcelongitude (E)latitude (N)annual meantemperature/°Cannual mean precipitation/mm
countyprovince
1ChaoyangLiaoning120.4241.588.6476.4
2ChifengInner Mongolia118.8742.287.2354.8
3JingchuanGansu107.3835.318.6521.3
4YanglingShaanxi108.9534.2713.4573.0
5ChangliHebei119.1539.7210.0735.2
6WeifangShandong119.1036.6212.2626.8
7LushiHenan111.0334.0612.6637.1
8XinzhouHubei114.8031.8415.3847.1
9FeixiAnhui117.1531.7015.7975.2
10KunmingYunnan102.7325.0414.61006.6
Tab.1  
Fig.2  
primer codeprimer pairstotal bandsband length range/bppolymorphic bandspolymorphic rate/%
E71/M82E-GGA/M-TAT91110-4044650.5
E71/M60E-GGA/M-CTC87110-6223742.5
E57/M71E-CGG/M-GGA7790-5273849.4
E57/M49E-CGG/M-CAG83110-4043137.3
E40/M82E-AGC/M-TAT8876-4043944.3
E40/M48E-AGC/M-CAC38110-4041744.7
E40/M62E-AGC/M-CTT78110-4043747.4
E33/M47E-AAG/M-CAA9776-4044445.4
E35/M47E-ACA/M-CAA7476-5274459.5
E32/M48E-AAC/M-CAC39110-4041948.7
total752352
average75.235.246.8
Tab.2  
populationspecific bandsband codespecific band rate/%shared band rate/%
Chaoyang9E71/M82-28-3, E57/M71-7-5, E57/M71-37-3, E57/M49-46-2, E40/M82-3-1, E40/M82-29-4, E35/M47-104-2, E40/M48-7-3, E33/M47-23-31.2069.02
Chifeng2E57/M71-56-4, E35/M47-36-30.2773.80
Jingchuan2E35/M47-66-3, E33/M47-13-50.2773.27
Yangling16E71/M82-27-3, E71/M82-29-3, E71/M60-17-4, E71/M60-24-1, E71/M60-32-2, E57/M49-2-4, E40/M82-2-4, E40/M82-11-2, E35/M47-20-4, E35/M47-27-1, E35/M47-30-5, E35/M47-43-4, E40/M62-59-5, E33/M47-20-3, E33/M47-32-4, E32/M48-68-52.1370.35
Changli1E57/M49-28-10.1379.92
Weifang4E71/M60-35-5, E40/M82-43-1, E35/M47-99-3, E40/M48-26-30.5377.13
Lushi4E57/M49-34-2, E40/M82-18-5, E35/M47-87-4, E33/M47-46-50.5375.53
Xinzhou2E57/M49-33-3, E35/M47-60-10.2774.34
Feixi2E33/M47-14-2, E33/M47-30-10.2773.80
Kunming3E71/M60-33-3, E40/M82-26-1, E40/M48-2-50.4078.19
mean4.50.6074.54
total45
Tab.3  
populationNaAPP/%NaNeHI
species level10037549.871.4987±0.50031.2328±0.33310.1403±0.18230.2160±0.2629
Chaoyang1023330.981.3098±0.46271.1886±0.32460.1106±0.17830.1656±0.2591
Chifeng1019726.201.2620±0.44001.1608±0.31390.0931±0.16990.1392±0.2461
Jingchuan1020126.731.2673±0.44281.1745±0.32790.0997±0.17700.1475±0.2552
Yangling1022329.651.2965±0.45701.1815±0.32430.1057±0.17660.1582±0.2561
Changli1015120.081.2008±0.40091.1195±0.26970.0708±0.15080.1064±0.2209
Weifang1017222.871.2287±0.42031.1364±0.28690.0804±0.15890.1207±0.2319
Lushi1018424.471.2447±0.43021.1521±0.30430.0884±0.16680.1319±0.2422
Xinzhou1019325.661.2566±0.43711.1687±0.32200.0966±0.17500.1428±0.2527
Feixi1019726.201.2620±0.44001.1774±0.33260.1005±0.17930.1478±0.2579
Kunming1016421.811.2181±0.41321.1429±0.30550.0814±0.16490.1204±0.2378
mean10191.525.471.25471.16020.09270.1381
Tab.4  
Fig.3  
Fig.4  
geographic and climatic factorsDINPNeHI
longitude-0.4110.4110.083-0.056-0.0040.018
latitude-0.5990.5950.2790.0440.1180.157
annual mean temperature0.524-0.520-0.1880.001-0.051-0.082
annual mean precipitation0.573-0.566-0.476-0.241-0.308-0.348
Tab.5  
1 Brown A H D, Moran G F (1981). Isozymes and the genetic resources of forest trees. In: Conkte M T, ed. Proceedings of a Symposium on Isozymes of North American Forest Trees and Forest Insects . NC: USA For Serv Gen Tech Rep, PSW-48, 1-10
2 Chang C S, Bongarten B, Hamrick J (1998). Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. Journal of Plant Research , 111: 17-24
doi: 10.1007/BF02507146
3 Cheng L L, Su S C, Qin L, Yin W L (2005). Extraction of DNA and establishment of AFLP techniques in leaves of Castanea mollissima Blume. Journal of Beijing Agricultural College , 20(2): 5-10 (in Chinese)
4 Doyle J J, Doyle J L (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin , 19: 11-15
5 Gu J T, Yang M S, Li Y M (2006). Allozyme genetic investigation on Robinia pseudoacacia. Scientia Silvae Sinicae , 42(11): 138-145 (in Chinese)
6 Hamrick J L, Godt M J W, Sherman-Broyles S L (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests , 6: 95-124
doi: 10.1007/BF00120641
7 Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996). PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theoretical and Applied Genetics , 93(8): 1202-1210
doi: 10.1007/BF00223451
8 Lang P, Huang H W (1999). Genetic diversity and geographic variation in natural populations of the Endemic castanea species in China. Acta Botanica Sinica , 41(6): 651-657 (in Chinese)
9 Li W Y, Gu W C, Zhou S L (2003). AFLP analysis on genetic diversity of Quercus mongolica populations. Scientia Silvae Sinicae , 39(5): 29-36 (in Chinese)
10 Li Z B, Lin P (2001). The study on genetic diversity of Aegiceras corniculatum populations in different latitudes. Journal of Jimei University , 6(1): 39-45 (in Chinese)
11 Liesebach H, Yang M S, Schneck V (2004). Genetic diversity and differentiation in a black locust (Robinia pseudoacacia L.) progeny test. Forest Genetics , 11(2): 151-161
12 Loveless M D, Hamrick J L H (1984). Ecological determinants of genetic structure in plant populations. Annual Review Ecology System , 15: 65-95
doi: 10.1146/annurev.es.15.110184.000433
13 Major A, Malvolti M E, Cannata F (1998). Comparison of isozyme and RAPD variability of black locust (Robinia pseudoacacia) clones selected for silvicultural objectives. Journal of Genetics & Breeding , 52: 49-62
14 Nei M (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy Sciences, USA , 70(12): 3321-3323
doi: 10.1073/pnas.70.12.3321
15 Peng H, Chen X R, Yu Z D (2003). Know-how on silviculture of black locust plantation. Journal of Soil and Water Conservation , 17(5): 11-15 (in Chinese)
16 Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding , 2(3): 225-238
doi: 10.1007/BF00564200
17 Redei K (1999). Black locust (Robinia pseudoacacia L.) improvement and management in Hungary. Forestry Studies in China , 11(2): 42-46
18 Shim S I, Jorgensen R B (2000). Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theoretical and Applied Genetics , 101: 227-233
doi: 10.1007/s001220051473
19 Song H Z, Zhang Q W, Zhou C J (2007). Analysis of genetic diversity of some species in Populus by AFLP marker. Scientia Silvae Sinicae , 43(12): 64-69 (in Chinese)
20 Surles S E, Hamrick J L, Bongarten B C (1989). Allozyme in black locust (Robinia pseudoacacia). Canadian Journal of Forest Research , 19(44): 471-479
doi: 10.1139/x89-073
21 Vos P, Hogers R, Bleeker M, Reijans M, Lee T V D, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research , 23(21): 4407-4414
doi: 10.1093/nar/23.21.4407
22 Wang L, Xing S Y, Yang K Q, Wang Z H, Gu Y Y, Shu H R (2006). Genetic relationships of ornamental cultivars of Ginkgo biloba analyzed by AFLP techniques. Acta Genetica Sinica , 33(11): 1020-1026
doi: 10.1016/S0379-4172(06)60138-8
23 Wang X R, Zhao Y, Chen X Y (2007). AFLP analysis of genetic diversity among Lespedeza bicolor populations. Bolletin of Botanical Research , 27(6): 736-740 (in Chinese)
24 Yang M S, Heike H, Volker S (2004). Genetic diversity and population structure of Robinia pseudoacacia provenances from middle Europe. Acta Ecologica Sinica , 24(12): 2700-2706 (in Chinese)
25 Yeh F C, Yang R C, Boyle T B J, Ye Z H, Mao J X (1997). Popgene, the user-friendly shareware for population genetic analysis. Edmonton: University of Alberta, Molecular Biology and Biotechnology Centre
26 Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y (2007a). Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern Xinjiang, China. Journal of Genetics and Genomics , 34(11): 1037-1047
doi: 10.1016/S1673-8527(07)60117-9
27 Yuan Z H, Yin Y L, Qu J L, Zhu L Q, Li Y (2007b). Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. Journal of Genetics and Genomics , 34(12): 1061-1071
doi: 10.1016/S1673-8527(07)60121-0
28 Zhang J L, Wang Z F, Li M G, Wang B S (2000). Molecular markers and their application in plant population research. Chinese Journal of Applied Ecology , 11(4): 631-636 (in Chinese)
29 Zhang L, Huang B B, Kai G Y, Guo M L (2006). Analysis of intraspecific variation of Chinese Carthamus tinctorius L. using AFLP markers. Acta Pharmaceutica Sinica , 41(1): 91-96 (in Chinese)
30 Zhang P, Liu J S, Jin C D, Zhang Y Z (2002). Cultivation and using status of Robinia pesudoacacia. Journal of Agricultural Science Yanbian University , 24(2): 223-227 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed