Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Frontiers of Agriculture in China  2011, Vol. 5 Issue (3): 400-406   https://doi.org/10.1007/s11703-011-1121-3
  RESEARCH ARTICLE 本期目录
Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)
Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)
Chunying MA1, Chunsheng LIU2,3, Wenquan WANG2,3()
1. Key Laboratory of Regulation and Control of Crop Growth of Hebei Province, College of Agronomy, Agricultural University of Hebei, Baoding 071000, China; 2. School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; 3. The Engineering Research Center for Chinese Medicine Standardized Production of Educational Ministry, Beijing 100102, China
 全文: PDF(468 KB)   HTML
Abstract

A full length cDNA encoding HMGR (designated as GuHMGR) was isolated from liquorice (Glycyrrhiza uralensis) based on degenerated PCR and genome walking. The full length cDNA of GuHMGR was 2330 bp with a 1518-bp open reading frame (ORF) encoding a 505-aa polypeptide. Bioinformatics analysis indicated that there were two trans-membrane domains in GuHMGR. A molecular model of tertiary structure showed that GuHMGR is a novel HMGR with a similar spatial structure to other plant HMGRs. The deduced polypeptide of GuHMGR has an isoelectric point (pI) of 6.41 and a calculated molecular weight of about 54.7 kDa. Sequence comparison and phylogenetic tree analysis showed that GuHMGR had the highest homology with HMGRs from Pisum sativum and Medicago truncatula, indicating that GuHMGR belongs to the plant HMGR group. Expression analysis showed the similar amount of transcript level of GuHMGR in roots and leaves, suggesting that this gene was expressed constitutively in plants. Therefore, this novel HMGR gene would possibly provide a new strategy for studying the glycyrrhizin metabolism at the molecular level in the future.

Key wordscloning    liquorice    glycyrrhiza uralensis    genome walker    HMG-CoA reductase
收稿日期: 2011-01-22      出版日期: 2011-09-05
Corresponding Author(s): WANG Wenquan,Email:bushbucker@126.com; wwq57@126.com   
 引用本文:   
. Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)[J]. Frontiers of Agriculture in China, 2011, 5(3): 400-406.
Chunying MA, Chunsheng LIU, Wenquan WANG. Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis). Front Agric Chin, 2011, 5(3): 400-406.
 链接本文:  
https://academic.hep.com.cn/fag/CN/10.1007/s11703-011-1121-3
https://academic.hep.com.cn/fag/CN/Y2011/V5/I3/400
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Bach T J (1995). Some new aspects of isoprenoid biosynthesis in plants—a review. Lipids , 30(3): 191–202
doi: 10.1007/BF02537822 pmid:7791527
2 Caelles C, Ferrer A, Balcells L, Hegardt F G, Boronat A (1989). Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol Biol , 13(6): 627–638
doi: 10.1007/BF00016018 pmid:2491679
3 Chang S J, Puryear J, Cairney J (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep , 11(2): 113–116
doi: 10.1007/BF02670468
4 Chappell J (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann Rev Plant Physio Plant Mol Biol , 46(1): 521–547
doi: 10.1146/annurev.pp.46.060195.002513
5 Choi D, Ward B L, Bostock R M (1992). Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell , 4(10): 1333–1344
pmid:1283354
6 Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H W (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet , 361(9374): 2045–2046
doi: 10.1016/S0140-6736(03)13615-X pmid:12814717
7 Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994). Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA , 91(3): 927–931
doi: 10.1073/pnas.91.3.927 pmid:8302869
8 Goldstein J L, Brown M S (1990). Regulation of the mevalonate pathway. Nature , 343 (6257): 425–430
doi: 10.1038/343425a0 pmid:1967820
9 Hayashi H, Hirota A, Hiraoka N, Ikeshiro Y (1999). Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biol Pharm Bull , 22(9): 947–950
pmid:10513618
10 Hayashi H, Huang P, Kirakosyan A, Inoue K, Hiraoka N, Ikeshiro Y, Kushiro T, Shibuya M, Ebizuka Y (2001). Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol Pharm Bull , 24(8): 912–916
doi: 10.1248/bpb.24.912 pmid:11510484
11 Ito M, Nakashima H, Baba M, Pauwels R, De Clercq E, Shigeta S, Yamamoto N (1987). Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-III/LAV)]. Antiviral Res , 7(3): 127–137
doi: 10.1016/0166-3542(87)90001-5 pmid:3475037
12 Jelesko J G, Jenkins S M, Rodríguez-Concepció M, Gruissem W (1999). Regulation of tomato HMG1 during cell proliferation and growth. Planta , 208(3): 310–318
doi: 10.1007/s004250050564
13 Jiang J H, Kai G Y, Cao X Y, Chen F M, He D N, Liu Q (2006). Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides Oliver. Biosci Rep , 26(2): 171–181
doi: 10.1007/s10540-006-9010-3 pmid:16773464
14 Learned R M, Fink G R (1989). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci USA , 86(8): 2779–2783
doi: 10.1073/pnas.86.8.2779 pmid:2649893
15 Liao Z H, Tan Q M, Chai Y R, Zuo K J, Chen M, Gong Y F, Wang P, Pi Y, Tan F, Sun X F, Tang K X (2004). Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Funct Plant Biol , 31: 73–81
doi: 10.1071/FP03153
16 Maldonado-Mendoza I E, Burnett R J, Nessler C L (1992). Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus. Plant Physiol , 100(3): 1613–1614
doi: 10.1104/pp.100.3.1613 pmid:16653173
17 Maldonado-Mendoza I E, Vincent R M, Nessler C L (1997). Molecular characterization of three differentially expressed members of the Camptotheca acuminata 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family. Plant Mol Biol , 34(5): 781–790
doi: 10.1023/A:1005866813347 pmid:9278168
18 Matsui S, Matsumoto H, Sonoda Y, Ando K, Aizu-Yokota E, Sato T, Kasahara T (2004). Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int Immunopharmacol , 4(13): 1633–1644
doi: 10.1016/j.intimp.2004.07.023 pmid:15454116
19 Park H, Denbow C J, Cramer C L (1992). Structure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Plant Mol Biol , 20(2): 327–331
doi: 10.1007/BF00014502 pmid:1391777
20 Schwede T, Kopp J, Guex N, Peitsch M C (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res , 31(13): 3381–3385
doi: 10.1093/nar/gkg520 pmid:12824332
21 Shen G A, Pang Y Z, Wu W S, Liao Z H, Zhao L X, Sun X F, Tang K X (2006). Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba. Mol Biol Rep , 33(2): 117–127
doi: 10.1007/s11033-006-0014-7 pmid:16817021
22 Shibata S (2000). A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi , 120(10): 849–862
pmid:11082698
23 Van Rossum T G J, Vulto, De Man R A, Brouwer J T, Schalm S W (1998). glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther , 12(3): 199–205
doi: 10.1046/j.1365-2036.1998.00309.x pmid:9570253
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed