1.College of Agronomy,
Agricultural University of Hebei, Baoding 071001, China; 2.Department of Agronomy
and Bioengineering, Baoding Vocational and Technical College, Baoding
071051, China; 3.College of Life Science,
Agricultural University of Hebei, Baoding 071001, China;
Abstract:Nitrate is one form of available nitrogen nutrient, and its uptake and transport in plants was mediated by nitrate transporters. It is important to elucidate the transcription mechanism of nitrate genes at the molecular level. In this study, the promoter of OsNrt2.1, a rice nitrate transporter gene previously cloned in our group, has been characterized. Based on PLACE online analysis, some important cis-regulatory elements were identified. Under the control of the full length fragment of OsNrt2.1 promoter (P-2047), the expression of the reporter gene Gus was up-regulated when exposed to low nitrogen. Promoter deletion analysis indicated that the low nitrate responding elements located at position −524 to −1 and −980 to −525. Several cis-regulatory elements such as CIACADIANLELHC and −10 promoter element, located at positions of −524 to −1, −980 to −525, −1487 to −981, and −2047 to −1488 in P-2047, were possibly involved in the circadian regulation of the OsNrt2.1 gene. Sugar signaling and sugar-responsive motif WBOXHVISO1 and TATCCAOSAMY were also identified in P-2047, suggesting that the exogenous sugar variations resulted from the photosynthesis changes were related to the up-regulated expression of Gus during the day time. It is guessed that the expression pattern of Gus with low-nitrate inducible and diurnal rhythm was partly, at least, via the mediation of Ca2+ signal transduction pathway. Owing to its regulation pattern with low nitrate inducible and typical circadian pattern, the OsNrt2.1 promoter maybe has a potential role in the generation of transgenic crop varieties with high-N use efficiency in the future.
Anthony J M, Fan X R, Mathilde O, Susan J S, Darren M(2007). Nitratetransport and signaling. J Exp Bot, 58: 2297―2306 doi: 10.1093/jxb/erm066
Campbell W H(2001). Structure and function of eukaryoticNAD(P)H: nitrate reductase. Cellular MolLife Sci, 58: 194―204 doi: 10.1007/PL00000847
Cárdenas-Navarro R, Adamowicz S, Robin P(1998). Diurnal nitrate uptake in young tomato (Lycopersicumesculentum Mill.) plants: test of a feedback-based model. J Exp Bot, 49: 721―730 doi: 10.1093/jexbot/49.321.721
Coruzzi G, Bush D R(2001). Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol, 125: 61―64 doi: 10.1104/pp.125.1.61
Coruzzi G M, Zhou L(2001). Carbon and nitrogen sensing and signaling in plants: emerging ‘matrixeffects’. Current Opin Plant Biol, 4: 247―253 doi: 10.1016/S1369-5266(00)00168-0
Covington M F, Harmer S L(2007). The circadian clock regulates auxin signaling and responsesin Arabidopsis. PLoS Biol, 5: 222 doi: 10.1371/journal.pbio.0050222
Crawford N M, Forde B G(2001). Molecular and developmental biology of inorganic nitrogen nutrition. In: Meyerowitz E, Somerville C,eds. The Arabidopsis Book. London: Academic Press
Crawford N M, Glass A D M(1998). Molecular and physiological aspects of nitrate uptakein plants. Trend Plant Sci, 3: 389―395 doi: 10.1016/S1360-1385(98)01311-9
Daniel-Vedele F, Filleur S, Caboche M(1998). Nitratetransport: a key step in nitrate assimilation. Current Opin Plant Biol, 1: 235―239 doi: 10.1016/S1369-5266(98)80110-6
Edwards K D, Anderson P E, Hall A, Salathia N S, Locke J C W, Lynn J R, Straume M, Smith J Q, Millar A J(2006). FLOWERING LOCUS C mediates naturalvariation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell, 18: 639―650 doi: 10.1105/tpc.105.038315
Filleur S, Dorbe M-F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F(2001). An Arabidopsis T-DNAmutant affected in Nrt2 genes isimpaired in nitrate uptake. FEBS Letters, 489: 220―224 doi: 10.1016/S0014-5793(01)02096-8
Forde B G, Clarkson D T(1999). Nitrate and ammonium nutrition of plants: physiologicaland molecular perspectives. Adv Bot Res, 30: 1―90 doi: 10.1016/S0065-2296(08)60226-8
Forde B G(2000). Nitrate transporters in plants: structure,function and regulation. Biochi BiophysicaActa, 1465: 219―235 doi: 10.1016/S0005-2736(00)00140-1
Galvan A, Fernandez E(2001). Eukaryotic nitrate and nitrite transporters. Cellular Mol Life Sci, 58: 225―233 doi: 10.1007/PL00000850
Glass A D M, Brito D T, Kaiser B N, Kronzucker H J, Kumar A, Okamoto M, Rawat S R, Williams L E, Miller A J(2001). Transporters responsible for theuptake and partitioning of nitrogenous solutes. Ann Rev Plant Physiol Plant Mol Biol, 52: 659―688
Glass A D M, Siddiqi M Y(1995). Nitrogen absorption by plant roots. In: Srivastava H S, Singh R P, eds. NitrogenNutrition in Higher Plants. NewDelhi, India: Associated PublishingCo., 21―56
Harmer S L, Hogenesch J B, Straume M, Chang H S, Han B, Zhu T, Wang X, Kreps J A, Kay S A(2000). Orchestrated transcription of keypathways in Arabidopsis by thecircadian clock. Science, 290: 2110―2113 doi: 10.1126/science.290.5499.2110
Huang N C, Chiang C S, Crawford N M, Tsay Y F(1996). CHL1 encodes a component of the low-affinitynitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell, 8: 2183―2191
Huang N C, Liu K H, Lo H J, Tsay Y F(1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene thatencodes a constitutive component of low-affinity uptake. Plant Cell, 11: 1381―1392
Koch K E(1997). Molecular crosstalk and the regulationof C- and N-responsive genes. In: FoyerC H, Quick W P, eds. A molecular Approachto Primary Metabolism in Higher Plants. London: Taylor and Francis, 105―124
Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F, Gojon A(2003). Regulationof root ion transporters by photosynthesis: functional importanceand relation with hexokinase. Plant Cell, 15: 2218―2232 doi: 10.1105/tpc.013516
Lejay L, Tillard P, Lepetit M(1999). Molecularand functional regulation of two NO3− uptake systemsby N and C status of Arabidopsis plants. Plant J, 18: 509―519 doi: 10.1046/j.1365-313X.1999.00480.x
McAinsh M R, Hetherington A M(1998). Encoding specificity in Ca2+signaling systems. Trends Plant Sci, 3: 32―36 doi: 10.1016/S1360-1385(97)01150-3
Müller M, Knudsen S(1993). The nitrogen response of a barley C-hordein promoteris controlled by positive and negative regulation of the GCN4 andendosperm box. Plant J, 4: 343―355 doi: 10.1046/j.1365-313X.1993.04020343.x
Nazoa P, Vidmar J J, Tranbarger T J, Mouline K, Damiani I, Tillard P, Zhuo D, Glass A D M, Touraine B(2003). Regulation of thenitrate transporter gene AtNRT2.1 in Arabidopsisthaliana: responses to nitrate, amino acids, and developmentalstage. Plant Mol Biol, 52: 689―703 doi: 10.1023/A:1024899808018
Pandey S, Tiwari S B, Upadhyaya K C, Sopory S K(2000). Calcium signaling: linking environmentalsignals to cellular functions. CriticalRev Plant Sci, 19: 291―318 doi: 10.1016/S0735-2689(00)80006-4
Piechulla B, Merforth N, Rudolph B(1998). Identificationof tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol, 38: 655―662 doi: 10.1023/A:1006094015513
Salomé P A, McClung C R(2005). What makes Arabidopsis tick: lightand temperature entrainment of the circadian clock. Plant Cell Environ, 28: 21―38
Sanders D, Pelloux J, Brownlee C, Harper J F(2002). Calcium at the crossroads of signalling. Plant Cell, 14: S401―S417
Thum K E, Kim M, Morishige D T, Eibl C, Koop H U, Mullet J E(2001). Analysis of barleychloroplast psbD light-responsive promoter elements in transplastomictobacco. Plant Mol Biol, 47: 353―366 doi: 10.1023/A:1011616400264
Touraine B, Glass A D M(1997). NO3− and ClO3− fluxes in the chl1-5 mutant of Arabidopsis thaliana—does the CHL1-5 gene encode a low-affinity NO3− transporter? Plant Physiol, 114: 137―144 doi: 10.1104/pp.114.1.137
Trewavas A J, Malhó R(1998). Ca2+ signalling in plantcells: the big network! Current Opin PlantBiol, 1: 428―433 doi: 10.1016/S1369-5266(98)80268-9
Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M(1993). A herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 72: 705―713 doi: 10.1016/0092-8674(93)90399-B
Wang R, Liu D, Crawford N M(1998). The Arabidopsis CHL1 protein plays a major rolein high affinity nitrate uptake. PNAS, 95: 15134―15139 doi: 10.1073/pnas.95.25.15134
Xiao K, Zhang C, Harrison M, Wang Z Y(2005). Isolation and characterization of a novel plant promoterthat directs strong constitutive expression of transgenes in plants. Mol Breeding, 15: 221―231 doi: 10.1007/s11032-004-5679-9
Xu H R, Gu J T, Lu W J, Deng R L, Cao Y F, Xiao K(2007). Characterization and expression ofnitrate transporter gene OsTNrt2.1 in rice (Oryza sativa L.). Acta Agron Sinica, 33(5): 723―730 (in Chinese)
Zhang H, Forde B G(2000). Regulation of Arabidopsis rootdevelopment by nitrate availability. JExp Bot, 51: 51―59 doi: 10.1093/jexbot/51.342.51
Zhang H N, Guo C J, Li C D, Xiao K(2008). Cloning, characterization and expression analysis oftwo superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). FrontAgric China, 2(2): 141―149 doi: 10.1007/s11703-008-0023-5
Zhou J J, Theodoulou F L, Muldin I, Ingemarsson B, Miller A J(1998). Cloning and functional characterization of a Brassica napus transporter that is able totransport nitrate and histidine. J BiolChem, 273: 12017―12023 doi: 10.1074/jbc.273.20.12017
Zhuo D G, Okamoto M, Vidmar J J, Glass A D M(1999). Regulation of a putative high-affinitynitrate transporter (Nrt2; 1At) in roots of Arabidopsis thaliana. PlantJ, 17: 563―568 doi: 10.1046/j.1365-313X.1999.00396.x