Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    0, Vol. Issue () : 77-86    https://doi.org/10.1007/s11703-011-1055-9
RESEARCH ARTICLE
Do the tropical freshwater fishes feed on aquatic fungi?
Kandikere R. SRIDHAR(), Naga M. SUDHEEP
Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Consumption and processing of allochthonous plant litter by fishes is more common in tropical than temperate streams and rivers. Therefore, aquatic hyphomycetes in water (filtration), leaf litter (bubble chamber incubation), and fecal pellets (direct observation and inoculation to sterile leaf litter) of three dominant fishes belonging to the family Cyprinidae (BoldItalic, BoldItalic, and BoldItalic) in two locations of the River Kali of the Western Ghats, India, were evaluated during postmonsoon season. Spores of 14 and 9 species of aquatic hyphomycetes were recovered on filtering water samples of Kaiga stream and Kadra dam with equal number of spores (32 spores·100 mL-1) and high Shannon diversity in Kaiga stream. In a bubble chamber incubation of leaf litter, 16 and 9 species were recovered from Kaiga stream and Kadra dam with high spore output (1122 versus 324 spores per mg dry mass) and high Shannon diversity in Kaiga stream. Both direct and indirect methods of examination of fecal pellets of fishes revealed more species in Kaiga stream than Kadra dam (4–7 versus 1–4 species). The spore release in leaf litter incubated with fecal pellets ranged from 2.3 to 98 spores·mg-1·day-1 with the highest BoldItalic in Kaiga stream; while in Kadra dam, it was from 0.02 to 22.9 spores·mg-1·day-1 with the highest in BoldItalic. The Shannon diversity of aquatic hyphomycetes was high in fecal pellets of BoldItalic of Kaiga stream and BoldItalic of Kadra dam. The top-ranked five species of aquatic hyphomycetes differed in water, leaf litter, and fish fecal pellets; however, BoldItalic was common for all. All five top-ranked species of aquatic hyphomycetes in feces produced multicelled spores; thus, they were likely to have a better chance of viability through gut passage than single-celled spores. Preferential feeding, fungi in gut and feces, and survival and dissemination of spores by invertebrates and fishes with reference to aquatic hyphomycetes were discussed.

Keywords Western Ghats      freshwater fishes      feces      drift spores      leaf litter      aquatic hyphomycetes     
Corresponding Author(s): SRIDHAR Kandikere R.,Email:sirikr@yahoo.com   
Issue Date: 05 March 2011
 Cite this article:   
Kandikere R. SRIDHAR,Naga M. SUDHEEP. Do the tropical freshwater fishes feed on aquatic fungi?[J]. Front Agric Chin, 0, (): 77-86.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1055-9
https://academic.hep.com.cn/fag/EN/Y0/V/I/77
Fig.1  Sampling sites at Kaiga stream (S1, S2, and S3) and Kadra dam (D1, D2, and D3)
parameterKaiga streamKadra dam
temperature/°C23.11a (18-26)31.75b*** (30-33)
pH7.67a (7.15-8.30)7.24b* (6.96-7.50)
conductivity/(μS·cm-1)41.81a (27.6-52.6)87.79b*** (66.7-128)
dissolved oxygen/(mg·L-1)8.18a (7.91-8.74)7.11b** (6.79-7.68)
Tab.1  Physicochemical variables of water samples of sampling locations ( = 3, mean, range in parenthesis)
taxonKaiga streamKadra dam
Lunulospora curvula Ingold19.115.2
Anguillospora crassa Ingold5.86.5
Flagellospora curvula Ingold5.74.0
Anguillospora longissima (Sacc. & P. Syd.) Ingold2.92.9
Triscelophorus monosporus Ingold2.60.6
Flagellospora penicillioides Ingold1.90
Cylindrocarpon sp.01.8
Condylospora spumigena Nawawi1.50
Triscelophorus konajensis K.R. Sridhar & Kaver.1.20.7
Lunulospora cymbiformis K. Miura0.50.1
Synnematophora constricta K.R. Sridhar & Kaver.0.40
Triscelophorus acuminatus Nawawi0.20.1
Helicomyces roseus Link0.20
Clavariana aquatica Nawawi0.20
Flabellospora verticillata Alas.0.20
total species149
total spores·100 mL-132.431.9
Shannon diversity2.6132.182
Pielou’s equitability0.6860.688
Tab.2  Spores of aquatic hyphomycetes in water of sampling sites (spores·100 mL) ( = 3, mean)
Fig.2  Species and spore richness of aquatic hyphomycetes in water and leaf litter collected from Kaiga stream and Kadra dam
taxonKaiga streamKadra dam
Flagellospora curvula Ingold328.9136.9
Anguillospora angulata (R.H. Petersen) Wolfe115.168.1
Lunulospora cymbiformis K. Miura101.262.1
Lunulospora curvula Ingold83.213.1
Triscelophurus konajensis K.R. Sridhar & Kaver.82.711.2
Triscelophorus acuminatus Nawawi65.512.1
Triscelophorus monosporus Ingold51.110.1
Dimorphospora foliicola Tubaki49.80
Anguillospora longissima (Sacc. & P. Syd.) Ingold44.35.2
Ingoldiella hamata D.E. Shaw38.70
Phalangispora constricta Nawawi & J. Webster36.52.1
Campylospora chaetocladia Ranzoni32.20
Lunulospora sp.29.11.6
Cylindrocarpon sp.25.20.5
Tetracladium setigetum (Grove) Ingold20.30.5
Anguillospora crassa Ingold18.20
Flabellospora crassa Alas.00.5
total species169
total spore·mg--1 dry mass1122324
Shannon diversity3.4732.367
Pielou’s equitability0.8680.640
Tab.3  Spores of aquatic hyphomycetes in leaf litter of sampling sites (spore·mg dry mass) ( = 3, mean)
taxonpercent contributionrelative abundance/%
A. lineatusP. filamentosusR. daniconius
Cylindrocarpon sp.(100)*--(33.3)
Triscelophorus acuminatus Nawawi45.0*52.9* (93)*-32.6 (31.0)
Triscelophorus monosporus Ingold18.9*29.9*46.4*31.7
Anguillospora longissima (Sacc. & P. Syd.) Ingold34.3*16.5*10.1* (61.2)*20.3 (20.4)
Triscelophorus konajensis K.R. Sridhar & Kaver.1.50.1* (6.5)*40.514.0 (2.2)
Flgellospora curvula Ingold0.10.1(38.9)*0.1 (13.0)
Arborispora palma K. Ando0.1(0.2)3.01.0 (0.1)
Helicomyces roesus Link-0.4*-0.1
Triramulispora sp.-(0.3)*-(0.1)
Flagellospora penicillioides Ingold-0.1*-0.03
total species6 (1)7 (4)4 (2)8 (7)
Shannon diversity1.6131.497 (0.397)1.528 (0.964)2.008 (2.043)
Pielou’s equitability0.6240.533 (0.198)0.764 (0.964)0.669 (0.728)
Tab.4  Percent contribution ( = 3, mean) and relative abundance of spores of aquatic hyphomycetes colonized leaf disks incubated with fecal pellets of fishes collected from Kaiga stream and Kadra dam (in parenthesis)
Fig.3  Species richness (direct and indirect methods) and spore richness (indirect method) of aquatic hyphomycetes in fecal pellets of fishes from Kaiga stream and Kadra dam
1 APHA (1995). Standard Methods in Examination of Water and Waste Water. Washington DC: American Public Health Association
2 Baldy V, Chauvet E, Charcosset J Y, Gessner M O (2002). Microbial dynamics associated with leaves decomposing in the mainstem and a floodplain pond of a large river. Aquat Microb Ecol , 28: 25–36
doi: 10.3354/ame028025
3 B?rlocher F (1981). Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mycol Soc , 76(1): 160–165
doi: 10.1016/S0007-1536(81)80020-4
4 B?rlocher F (1992). Recent developments in stream ecology and their relevance in aquatic mycology. In: B?rlocher F, ed. The Ecology of Aquatic Hyphomycetes . Berlin: Springer-Verlag, 16–37
5 B?rlocher F (2009). Reproduction and dispersal in aquatic hyphomycetes. Mycoscience , 50(1): 3–8
doi: 10.1007/s10267-008-0449-x
6 B?rlocher F, Brendelberger H (2004). Clearance of aquatic hyphomycete spores by a benthic suspension feeder. Limnol Oceanogr , 49(6): 2292–2296
doi: 10.4319/lo.2004.49.6.2292
7 B?rlocher F, Kendrick B (1976). Hyphomycetes as intermediaries of energy flow in streams. In: Jones E B G, ed. Recent Advances in Aquatic Mycology . London: Elek Science, 435–445
8 Bhat A (2003). Diversity and composition of freshwater fishes in river systems of Central Western Ghats, India. Environ Biol Fishes , 68(1): 25–38
doi: 10.1023/A:1026017119070
9 Boulton A J, Boyero L, Covich A P, Dobson M, Lake P S, Pearson R G (2008). Are tropical streams ecologically different from temperate streams? In: Dudgeon D, ed. Aquatic Ecosystems: Tropical Stream Ecology . London: Elsevier Science, 257–284
10 Bowen S H (1983). Detritivory in Neotropical fish communities. Environ Biol Fishes , 9(2): 137–144
doi: 10.1007/BF00690858
11 Bowen S H, Bonetto A A, Ahlgren M O (1984). Microorganisms and detritus in the diet of a typical neotropical reverine detritivore, Prochilodus platensis (Pisces: Prochilodontidae). Limnol Oceanogr , 29(5): 1120–1122
doi: 10.4319/lo.1984.29.5.1120
12 Boyero L, Ramírez A, Dudgeon D, Pearson R G (2009). Are tropical streams really different? J N Am Benthol Soc , 28(2): 397–403
doi: 10.1899/08-146.1
13 Chandrashekar K R, Sridhar K R, Kaveriappa K M (1989). Palatability of rubber leaves colonized by aquatic hyphomycetes. Arch Hydrobiol , 115: 361–369
14 Chauvet E, Suberkropp K (1998). Temperature and sporulation of aquatic hyphomycetes. Appl Environ Microbiol , 64(4): 1522–1525
pmid:16349551
15 Chergui H, Pattee E (1990). The processing of leaves of trees and aquatic macrophytes in the network of the River Rhone. Int Rev Gesamten Hydrobiol Hydrograph , 75(3): 281–302
doi: 10.1002/iroh.19900750303
16 Cheshire K, Boyero L, Pearson R G (2005). Food webs in tropical Australian streams: shredders are not scarce. Freshwat Biol , 50(5): 748–769
doi: 10.1111/j.1365-2427.2005.01355.x
17 Cross W F, Covic A P, Crowl T A, Benstead J P, Ramirez A (2008). Secondary production, longevity and resource consumption rates of freshwater shrimps in two tropical streams with contrasting geomorphology and food web structure. Freshwat Biol , 53(12): 2504–2519
doi: 10.1111/j.1365-2427.2008.02078.x
18 Crowl T A, Mcdowell W H, Covic A P, Johnson S L (2001). Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology , 82(3): 775–783
doi: 10.1890/0012-9658(2001)082[0775:FSEODP]2.0.CO;2
19 Cummins K W (1973). Trophic relations of aquatic insects. Ann Rev Entomol , 18(1): 183–206
doi: 10.1146/annurev.en.18.010173.001151
20 Cummins K W, Coffman W P, Roff P A (1966). Trophic relations in a small woodland stream. Ver Int Verein Theor Angew Limnol , 16: 627–638
21 Cummins K W, Wilzbach M A (1985). Field Procedures for Analysis of Functional Feeding Groups of Stream Invertebrates. University of Maryland, Frostburg: Appalachian Environmental Laboratory Contribution # 1611
22 Cummins K W, Wilzbach M A, Gates D M, Perry J B, Taliaferro W B (1989). Shredders and riparian vegetation. BioScience , 39(1): 24–30
doi: 10.2307/1310804
23 Dobson M (2004). Freshwater crabs in Africa. Freshwat Forum , 21: 3–26
24 Dobson M, Magna A, Mathooko J, Ndegwa F (2002). Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwat Biol , 47(5): 909–919
doi: 10.1046/j.1365-2427.2002.00818.x
25 Dudgeon D (1999). Tropical Asian Streams: Zoobenthos, Ecology and Conservation. Hong Kong: Hong Kong University Press
26 Findlay S E G, Arsuffi T L (1989). Microbial growth and detritus transformation during decomposition of leaf litter in a stream. Freshwat Biol , 21(2): 261–269
doi: 10.1111/j.1365-2427.1989.tb01364.x
27 Fisher S G, Likens G E (1972). Stream ecosystem: organic energy budget. BioScience , 22(1): 33–35
doi: 10.2307/1296183
28 Gessner M O (1997). Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica , 13: 33–44
29 Gessner M O, Gulis V, Kuehn K A, Chauvet E, Suberkropp K (2007). Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek C P, Druzhinina I S, eds. Environmental and Microbial Relationships. The Mycota IV , 2nd ed. Berlin Heidelberg: Springer-Verlag, 302–324
30 Gra?a M A S, B?rlocher F, Gessner M O (2005). Methods to Study Litter Decomposition: A Practical Guide. Netherlands: Springer, 153–167
31 Gra?a M A S, Cressa C (2010). Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol , 95(1): 27–41
doi: 10.1002/iroh.200911173
32 Guevara R, Rayner A M, Reynolds S E (2000). Effects of fungivory by two specialist ciid beetles (Octotemnus glabriculus and Cis boleti) on the reproductive fitness of their host fungus, Coriolus versicolor. New Phytol , 145(1): 137–144
doi: 10.1046/j.1469-8137.2000.00552.x
33 Gulis V, Marvanová L, Descals E (2005). An illustrated key to the common temperate species of aquatic hyphomycetes. In: Gra?a M A S, B?rlocher F, Gessner M O, eds. Methods to Study Litter Decomposition: A Practical Guide . Netherlands: Springer, 153–167
34 Gulis V, Suberkropp K (2006). Fungi: Biomass, production and sporulation of aquatic hyphomycetes. In: Hauer F R, Lamberti G A, eds. Methods in Stream Ecology. 2nd ed. Elsevier Inc , 311–325
35 Guruge W A H P (2002). In: Omar R, Ali R Z, Latif M T, Lihan T, Adam J H, eds. Proceedings of the Regional Symposium on Environment and Natural Resources, Volume 1. Malaysia: Kuala Lumpur , 154–160
36 Hynes H B N (1970). The Ecology of Running Waters. Toronto: University of Toronto Press
37 Ingold C T (1975). An Illustrated Guide to Aquatic and Waterborne Hyphomycetes (Fungi Imperfecti) with Notes on their Biology. UK: Freshwater Biological Association Scientific Publication # 30
38 Iqbal S H, Webster J (1973). Aquatic hyphomycete spora of the River Exe and its tributaries. Trans Br Mycol Soc , 61(2): 331–346
doi: 10.1016/S0007-1536(73)80155-X
39 Kn?ppel H A (1970). Food of Central Amazonian fishes. Contribution to the nutrient-ecology of Amazonian rainforest-streams. Amazoniana , 2: 257–352
40 Konishi M, Nakano S, Iwata T (2001). Trophic cascading effects of predatory fish on leaf litter processing in a Japanese stream. Ecol Res , 16(3): 415–422
doi: 10.1046/j.1440-1703.2001.00406.x
41 Larned S T, Chong C T, Punewai N (2001). Detrital fruit processing in a Hawaiian stream ecosystem. Biotropica , 33: 241–248
42 Li A O Y, Dudgeon D (2008). Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwat Biol , 53(10): 2011–2025
doi: 10.1111/j.1365-2427.2008.02022.x
43 Magurran A E (1988). Ecological Diversity and its Measurement. New Jersey: Princeton University Press
44 Maharning A R, B?rlocher F (1996). Growth and reproduction in aquatic hyphomycetes. Mycologia , 88(1): 80–88
doi: 10.2307/3760786
45 Mancinelli G, Costantini M L, Rossi L (2002). Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia , 133(3): 402–411
doi: 10.1007/s00442-002-1001-x
46 Mancinelli G, Costantini M L, Rossi L (2007). Top-down control of reed detritus processing in a lake littoral zone: experimental evidence of a seasonal compensation between fish and invertebrate predation. Int Rev Hydrobiol , 92(2): 117–134
doi: 10.1002/iroh.200510962
47 March J G, Benstead J P, Pringle C M, Ruebel M W (2001). Linking shrimp assemblages with rates of detrital processing along an elevational gradient in a tropical stream. Can J Fish Aquat Sci , 58(3): 470–478
doi: 10.1139/cjfas-58-3-470
48 Medeiros A O, Pascoal C, Gra?a M A S (2009). Diversity and activity of aquatic fungi under low oxygen conditions. Freshwat Biol , 54(1): 142–149
doi: 10.1111/j.1365-2427.2008.02101.x
49 Moss B (2007). Rapid shredding of leaves by crabs in a tropical African stream. Ver Int Verein Limnol , 29: 147–150
50 Nakamori T, Suzuki A (2010). Spore resistance and gut-passage time of macrofungi consumed by Ceratophysella denisana (Collembola: Hypogastruridae). Fungal Ecol , 3(1): 38–42
doi: 10.1016/j.funeco.2009.06.003
51 Or?owska M, Lengiewicz I, Suszycka M (2004). Hyphomycetes developing on water plants and bulrushes in fish ponds. Pol J Environ Stud , 13: 703–707
52 Pabst S, Scheifhacken N, Hesselschwerdt J, Wantzen K (2008). Leaf litter degradation in the wave impact zone of a pre-alpine lake. Hydrobiologia , 613(1): 117–131
doi: 10.1007/s10750-008-9477-y
53 Pearson R G, Boyero L (2009). Gradients in regional diversity of freshwater taxa. J N Am Benthol Soc , 28(2): 504–514
doi: 10.1899/08-118.1
54 Pielou F D (1975). Ecological Diversity. New York: Wiley InterScience
55 Rosemond A D, Pringle C M, Ramírez A (1998). Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwat Biol , 39(3): 515–523
doi: 10.1046/j.1365-2427.1998.00301.x
56 Rosemond A D, Pringle C M, Ramírez A, Paul M J (2001). A test of top-down and bottom-up control in a detritus-based food web. Ecology , 82(8): 2279–2293
doi: 10.1890/0012-9658(2001)082[2279:ATOTDA]2.0.CO;2
57 Sridhar K R, B?rlocher F (1994). Viability of aquatic hyphomycete conidia in foam. Can J Bot , 72(1): 106–110
doi: 10.1139/b94-015
58 Sridhar K R, B?rlocher F (2000). Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams. Appl Environ Microbiol , 66(3): 1114–1119
doi: 10.1128/AEM.66.3.1114-1119.2000 pmid:10698779
59 Sridhar K R, B?rlocher F, Wennrich R, Krauss G-J, Krauss G (2008). Fungal biomass and diversity in sediments and on leaf litter in heavy metal contaminated waters of Central Germany. Fund Appl Limnol , 171(1): 63–74
doi: 10.1127/1863-9135/2008/0171-0063
60 Sridhar K R, Beaton M, B?rlocher F(2010).Fungal propagules and DNA in feces of two detritus feeding amphipods.Microb Ecol ,
doi: 10.1007/s00248-010-9732-4 pmid:20697705
61 StatSoft (2008). Statistica, Version 8. Tulsa, Oklahoma , USA: StatSoft
62 Stout R J (1989). Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: a theoretical approach. Can J Fish Aquat Sci , 46(7): 1097–1106
doi: 10.1139/f89-142
63 Suberkropp K (1991). Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycol Res , 95(7): 843–850
doi: 10.1016/S0953-7562(09)80048-8
64 Suberkropp K (1992). Interactions with invertebrates. In: B?rlocher F, ed. The Ecology of Aquatic Hyphomycetes . Berlin: Springer-Verlag, 118–134
65 Wantzen K M, Junk W J (2000). The importance of stream-wetland-systems for biodiversity: a tropical perspective. In: Gopal B, Junk W J, Davies J A, eds. Biodiversity in Wetlands: Assessment, Function and Conservation . Netherlands: Backhuys, Leiden, 11–34
66 Wantzen K M, Wagner R (2006). Detritus processing by shredders: a tropical-temperate comparison. J N Am Benthol Soc , 25: 214–230
67 Wantzen K M, Wagner R, Suetfel R, Junk W J (2002). How do plant-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Ver Int Verein Limnol 28: 815–821
68 Wantzen K M, Yule C M, Mathooko J M, Pringle C M (2008). Organic litter processing in tropical streams. In: Dudgeon D, ed. Tropical Stream Ecology . London: Elsevier, 43–64
69 Webster J (1987). Convergent evolution and the functional significance of spore shape in aquatic and semi-aquatic fungi. In: Rayner A D M, Brasier C M, Moore D, eds. Evolutionary Biology of the Fungi . Cambridge: Cambridge University Press, 191–201
70 Wootton J T, Oemke M P (1992). Latitudinal differences in fish community trophic structure and the role of fish herbivory in a Costa Rican stream. Environ Biol Fishes , 35(3): 311–319
doi: 10.1007/BF00001899
71 Wurzbacher C M, B?rlocher F, Grossart H-P (2010). Fungi in lake ecosystems. Aquat Microb Ecol , 59: 125–149
doi: 10.3354/ame01385
72 Yule C M, Leong M Y, Liew K C, Ratnarajah L, Schmidt K, Wong H M, Pearson R G, Boyero L (2009). Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J N Am Benthol Soc , 28(2): 404–415
doi: 10.1899/07-161.1
[1] Bombrana S. KADAMANNAYA, Kandikere R. SRIDHAR, Kanale S. SREEPADA, . Assemblage and distribution of pill millipedes and earthworms in relation to soil edaphic features in the Western Ghats and the west coast of India[J]. Front. Agric. China, 2010, 4(2): 243-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed