Safety issues of methylglyoxal and potential scavengers
Shiming LI1, Siyu LIU2, Chi-Tang HO2()
1. Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China 2. Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
The health safety of methylglyoxal (MGO) has been recognized as a key issue owing to its ultra-high reactivity toward some key biomolecules such as amino acids, proteins, DNA, sulfhydryl- and basic nitrogen-containing compounds, including amino-bearing neurotransmitters. In this review, we have summarized the endo- and exogenous sources of MGO and its accumulation inside the body due to high intake, abnormal glucose metabolism and or malfunctioning glyoxalases, and review the debate concerning the adverse functionality of MGO ingested from foods. Higher than normal concentrations of MGO in the circulatory system and tissues have been found to be closely associated with the production of advanced glycation end products (AGEs), increased oxidative stress, elevated inflammation and RAGE (AGE receptors) activity, which subsequently progresses to a pathological stage of human health, such as diabetes complications, cancer, cardiovascular and degenerative diseases. Having illustrated the mechanisms of MGO trapping in vivo, we advocate the development of efficient and efficacious MGO scavengers, either assisting or enhancing the activity of endogenous glyoxalases to facilitate MGO removal, or providing phytochemicals and functional foods containing them, or pharmaceuticals to irreversibly bind MGO and thus form MGO-complexes that are cleared from the body.
Degen J, Hellwig M, Henle T. 1,2-Dicarbonyl compounds in commonly consumed foods. Journal of Agricultural and Food Chemistry, 2012, 60(28): 7071–7079 https://doi.org/10.1021/jf301306g
pmid: 22724891
Lo C Y, Li S, Wang Y, Tan D, Pan M H, Sang S, Ho C T. Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry, 2008, 107(3): 1099–1105 https://doi.org/10.1016/j.foodchem.2007.09.028
pmid: 26065777
5
Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition & Food Research, 2008, 52(4): 483–489 https://doi.org/10.1002/mnfr.200700282
pmid: 18210383
6
Hayashi T, Shibamoto T. Analysis of methyl glyoxal in foods and beverages. Journal of Agricultural and Food Chemistry, 1985, 33(6): 1090–1093 https://doi.org/10.1021/jf00066a018
7
Löbner J, Degen J, Henle T. Creatine is a scavenger for methylglyoxal under physiological conditions via formation of N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr). Journal of Agricultural and Food Chemistry, 2015, 63(8): 2249–2256 https://doi.org/10.1021/jf505998z
pmid: 25655840
8
Dornadula S, Elango B, Balashanmugam P, Palanisamy R, Kunka Mohanram R. Pathophysiological insights of methylglyoxal induced type-2 diabetes. Chemical Research in Toxicology, 2015, 28(9): 1666–1674 https://doi.org/10.1021/acs.chemrestox.5b00171
pmid: 26250540
9
Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G. Reactivity, selectivity, and reaction mechanisms of aminoguanidine, hydralazine, pyridoxamine, and carnosine as sequestering agents of reactive carbonyl species: a comparative study. ChemMedChem, 2016, 11(16): 1778–1789 https://doi.org/10.1002/cmdc.201500552
pmid: 26891408
10
Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes J W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney International, 1999, 55(2): 389–399 https://doi.org/10.1046/j.1523-1755.1999.00302.x
pmid: 9987064
11
Aldini G, Dalle-Donne I, Facino R M, Milzani A, Carini M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Medicinal Research Reviews, 2007, 27(6): 817–868 https://doi.org/10.1002/med.20073
pmid: 17044003
12
Thornalley P J. Monosaccharide autoxidation in health and disease. Environmental Health Perspectives, 1985, 64: 297–307 https://doi.org/10.1289/ehp.8564297
pmid: 3007096
13
Hayashi T, Namki M. Formation of two-carbon sugar fragment at an early stage of the browning reaction of sugar with amine. Agricultural and Biological Chemistry, 1980, 44(11): 2575–2580
Phillips S A, Thornalley P J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. European Journal of Biochemistry, 1993, 212(1): 101–105 https://doi.org/10.1111/j.1432-1033.1993.tb17638.x
pmid: 8444148
16
Hopper D J, Cooper R A. The regulation of Escherichia coli methylglyoxal synthase: a new control site in glycolysis? FEBS Letters, 1971, 13(4): 213–216 https://doi.org/10.1016/0014-5793(71)80538-0
pmid: 11945670
17
Hopper D J, Cooper R A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochemical Journal, 1972, 128(2): 321–329 https://doi.org/10.1042/bj1280321
pmid: 4563643
18
Tötemeyer S, Booth N A, Nichols W W, Dunbar B, Booth I R. From famine to feast: the role of methylglyoxal production in Escherichia coli. Molecular Microbiology, 1998, 27(3): 553–562 https://doi.org/10.1046/j.1365-2958.1998.00700.x
pmid: 9489667
Thornalley P J. Dicarbonyl intermediates in the maillard reaction. Annals of the New York Academy of Sciences, 2005, 1043(1): 111–117 https://doi.org/10.1196/annals.1333.014
pmid: 16037229
21
Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. BioMed Research International, 2014, 2014(2014): 238485
22
Klöpfer A, Spanneberg R, Glomb M A. Formation of arginine modifications in a model system of Na-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal. Journal of Agricultural and Food Chemistry, 2011, 59(1): 394–401 https://doi.org/10.1021/jf103116c
pmid: 21126021
23
Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research, 2013, 47(S1): 3–27
24
Oya T, Hattori N, Mizuno Y, Miyata S, Maeda S, Osawa T, Uchida K. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. Journal of Biological Chemistry, 1999, 274(26): 18492–18502 https://doi.org/10.1074/jbc.274.26.18492
pmid: 10373458
25
Shipanova I N, Glomb M A, Nagaraj R H. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Archives of Biochemistry and Biophysics, 1997, 344(1): 29–36 https://doi.org/10.1006/abbi.1997.0195
pmid: 9244378
26
Ahmed M U, Brinkmann Frye E, Degenhardt T P, Thorpe S R, Baynes J W. Nε-(Carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochemical Journal, 1997, 324(2): 565–570 https://doi.org/10.1042/bj3240565
pmid: 9182719
27
Nasiri R, Field M J, Zahedi M, Moosavi-Movahedi A A. Cross-linking mechanisms of arginine and lysine with a,b-dicarbonyl compounds in aqueous solution. Journal of Physical Chemistry A, 2011, 115(46): 13542–13555 https://doi.org/10.1021/jp205558d
pmid: 21970517
28
Nagaraj R H, Shipanova N, Faust F M. Protein cross-linking by the Maillard reaction isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. Journal of Biological Chemistry, 196, 271(32): 19338–19345
29
Lo T W, Westwood M E, McLellan A C, Selwood T, Thornalley P J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. Journal of Biological Chemistry, 1994, 269(51): 32299–32305
pmid: 7798230
30
Nemet I, Varga-Defterdarović L. Methylglyoxal-derived b-carbolines formed from tryptophan and its derivates in the Maillard reaction. Amino Acids, 2007, 32(2): 291–293 https://doi.org/10.1007/s00726-006-0337-7
pmid: 16729192
de Arriba S G, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiology of Aging, 2007, 28(7): 1044–1050 https://doi.org/10.1016/j.neurobiolaging.2006.05.007
pmid: 16781798
33
Kaufmann E, Boehm B O, Süssmuth S D, Kientsch-Engel R, Sperfeld A, Ludolph A C, Tumani H. The advanced glycation end-product N epsilon-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neuroscience Letters, 2004, 371(2-3): 226–229 https://doi.org/10.1016/j.neulet.2004.08.071
pmid: 15519762
34
Southern L, Williams J, Esiri M M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurology, 2007, 7(1): 35 https://doi.org/10.1186/1471-2377-7-35
pmid: 17939855
Sena C M, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça R M. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 2012, 65(5): 497–506 https://doi.org/10.1016/j.phrs.2012.03.004
pmid: 22425979
37
Chang T, Wang R, Wu L. Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radical Biology & Medicine, 2005, 38(2): 286–293 https://doi.org/10.1016/j.freeradbiomed.2004.10.034
pmid: 15607912
38
Dhar A, Desai K, Kazachmov M, Yu P, Wu L. Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism: Clinical and Experimental, 2008, 57(9): 1211–1220 https://doi.org/10.1016/j.metabol.2008.04.014
pmid: 18702946
39
Ward R A, McLeish K R. Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrology, Dialysis, Transplantation, 2004, 19(7): 1702–1707 https://doi.org/10.1093/ndt/gfh271
pmid: 15150351
40
Kalapos M P, Littauer A, de Groot H. Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Archives of Toxicology, 1993, 67(5): 369–372 https://doi.org/10.1007/BF01973710
pmid: 8368947
41
Amicarelli F, Colafarina S, Cattani F, Cimini A, Di Ilio C, Ceru M P, Miranda M. Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radical Biology & Medicine, 2003, 35(8): 856–871 https://doi.org/10.1016/S0891-5849(03)00438-6
pmid: 14556850
42
Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radical Biology & Medicine, 1998, 25(1): 121–129 https://doi.org/10.1016/S0891-5849(98)00071-9
pmid: 9655530
43
Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K. Increase in three a,b-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochemical and Biophysical Research Communications, 1999, 256(1): 89–93 https://doi.org/10.1006/bbrc.1999.0221
pmid: 10066428
44
Jia X, Olson D J, Ross A R, Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB Journal, 2006, 20(9): 1555–1557 https://doi.org/10.1096/fj.05-5478fje
pmid: 16723378
45
Oliveira L M, Lages A, Gomes R A, Neves H, Família C, Coelho A V, Quintas A. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochemistry, 2011, 12(1): 41 https://doi.org/10.1186/1471-2091-12-41
pmid: 21819598
46
Tóth A E, Tóth A, Walter F R, Kiss L, Veszelka S, Ózsvári B, Puskás L G, Heimesaat M M, Dohgu S, Kataoka Y, Rákhely G, Deli M A. Compounds blocking methylglyoxal-induced protein modification and brain endothelial injury. Archives of Medical Research, 2014, 45(8): 753–764 https://doi.org/10.1016/j.arcmed.2014.10.009
pmid: 25446614
47
Kuhla B, Lüth H J, Haferburg D, Boeck K, Arendt T, Münch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Annals of the New York Academy of Sciences, 2005, 1043(1): 211–216 https://doi.org/10.1196/annals.1333.026
pmid: 16037241
48
Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids, 42(4): 1221–1236
49
Vitek M P, Bhattacharya K, Glendening J M, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(11): 4766–4770 https://doi.org/10.1073/pnas.91.11.4766
pmid: 8197133
50
Naudí A, Jové M, Cacabelos D, Ayala V, Cabre R, Caro P, Gomez J, Portero-Otín M, Barja G, Pamplona R. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction. Amino Acids, 2013, 44(2): 361–371 https://doi.org/10.1007/s00726-012-1339-2
pmid: 22722543
51
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxidants & Redox Signalling, 2009, 11(12): 3071–3109 https://doi.org/10.1089/ars.2009.2484
pmid: 19489690
52
Takamiya R, Takahashi M, Myint T, Park Y S, Miyazawa N, Endo T, Fujiwara N, Sakiyama H, Misonou Y, Miyamoto Y, Fujii J, Taniguchi N. Glycation proceeds faster in mutated Cu, Zn-superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB Journal, 2003, 17(8): 938–940
pmid: 12626432
53
Kikuchi S, Shinpo K, Ogata A, Tsuji S, Takeuchi M, Makita Z, Tashiro K. Detection of N epsilon-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2002, 3(2): 63–68 https://doi.org/10.1080/146608202760196020
pmid: 12215227
54
Kalousová M, Zima T, Tesař V, Dusilová-Sulková S, Škrha J. Advanced glycoxidation end products in chronic diseases-clinical chemistry and genetic background. Mutation Research, 2005, 579(1-2): 37–46 doi:10.1016/j.mrfmmm.2005.03.024
pmid: 16084533
55
Andersson A, Covacu R, Sunnemark D, Danilov A I, Dal Bianco A, Khademi M, Wallström E, Lobell A, Brundin L, Lassmann H, Harris R A. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. Journal of Leukocyte Biology, 2008, 84(5): 1248–1255 https://doi.org/10.1189/jlb.1207844
pmid: 18644848
56
Münch G, Lüth H J, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P. Crosslinking of a-synuclein by advanced glycation endproducts--an early pathophysiological step in Lewy body formation? Journal of Chemical Neuroanatomy, 2000, 20(3–4): 253–257 https://doi.org/10.1016/S0891-0618(00)00096-X
pmid: 11207423
57
Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 2005, 64(9): 816–830 https://doi.org/10.1097/01.jnen.0000179050.54522.5a
pmid: 16141792
58
Dukic-Stefanovic S, Schinzel R, Riederer P, Münch G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology, 2001, 2(1): 19–34 https://doi.org/10.1023/A:1010052800347
pmid: 11708614
59
Wu C H, Yen G C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3167–3173 https://doi.org/10.1021/jf048550u
pmid: 15826074
60
Sang S, Shao X, Bai N, Lo C Y, Yang C S, Ho C T. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chemical Research in Toxicology, 2007, 20(12): 1862–1870 https://doi.org/10.1021/tx700190s
pmid: 18001060
61
Lv L, Shao X, Chen H, Ho C T, Sang S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chemical Research in Toxicology, 2011, 24(4): 579–586 https://doi.org/10.1021/tx100457h
pmid: 21344933
62
Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12152–12158 https://doi.org/10.1021/jf504132x
pmid: 25412188
63
Shao X, Bai N, He K, Ho C T, Yang C S, Sang S. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chemical Research in Toxicology, 2008, 21(10): 2042–2050 https://doi.org/10.1021/tx800227v
pmid: 18774823
Shao X, Chen H, Zhu Y, Sedighi R, Ho C T, Sang S. Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. Journal of Agricultural and Food Chemistry, 2014, 62(14): 3202–3210 https://doi.org/10.1021/jf500204s
pmid: 24689984