Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2018, Vol. 5 Issue (3): 312-320   https://doi.org/10.15302/J-FASE-2017174
  本期目录
Safety issues of methylglyoxal and potential scavengers
Shiming LI1, Siyu LIU2, Chi-Tang HO2()
1. Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
2. Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
 全文: PDF(524 KB)   HTML
Abstract

The health safety of methylglyoxal (MGO) has been recognized as a key issue owing to its ultra-high reactivity toward some key biomolecules such as amino acids, proteins, DNA, sulfhydryl- and basic nitrogen-containing compounds, including amino-bearing neurotransmitters. In this review, we have summarized the endo- and exogenous sources of MGO and its accumulation inside the body due to high intake, abnormal glucose metabolism and or malfunctioning glyoxalases, and review the debate concerning the adverse functionality of MGO ingested from foods. Higher than normal concentrations of MGO in the circulatory system and tissues have been found to be closely associated with the production of advanced glycation end products (AGEs), increased oxidative stress, elevated inflammation and RAGE (AGE receptors) activity, which subsequently progresses to a pathological stage of human health, such as diabetes complications, cancer, cardiovascular and degenerative diseases. Having illustrated the mechanisms of MGO trapping in vivo, we advocate the development of efficient and efficacious MGO scavengers, either assisting or enhancing the activity of endogenous glyoxalases to facilitate MGO removal, or providing phytochemicals and functional foods containing them, or pharmaceuticals to irreversibly bind MGO and thus form MGO-complexes that are cleared from the body.

Key wordsreactive carbonyl species    advanced glycation end products    diabetes, brain health    methylglyoxal trapping agents
收稿日期: 2017-07-23      出版日期: 2018-07-31
Corresponding Author(s): Chi-Tang HO   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2018, 5(3): 312-320.
Shiming LI, Siyu LIU, Chi-Tang HO. Safety issues of methylglyoxal and potential scavengers. Front. Agr. Sci. Eng. , 2018, 5(3): 312-320.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2017174
https://academic.hep.com.cn/fase/CN/Y2018/V5/I3/312
Classification Name Structure
a, b-Unsaturated aldehydes Acrolein
4-Hydroxy-trans-2-nonenal
Di-aldehydes Malondialdehyde
Glyoxal
Keto-aldehydes MGO
4-Oxo-trans-2-nonenal
Tab.1  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Wang Y, Ho C T. Flavour chemistry of methylglyoxal and glyoxal. Chemical Society Reviews, 2012, 41(11): 4140–4149
https://doi.org/10.1039/c2cs35025d pmid: 22508009
2 Degen J, Hellwig M, Henle T. 1,2-Dicarbonyl compounds in commonly consumed foods. Journal of Agricultural and Food Chemistry, 2012, 60(28): 7071–7079
https://doi.org/10.1021/jf301306g pmid: 22724891
3 Revel G D, Pripis-Nicolau L, Barbe J C, Bertrand A. The detection of a-dicarbonyl compounds in wine by formation of quinoxaline derivatives. Journal of the Science of Food and Agriculture, 2000, 80(1): 102–108
https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1<102::AID-JSFA493>3.0.CO;2-Y
4 Lo C Y, Li S, Wang Y, Tan D, Pan M H, Sang S, Ho C T. Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry, 2008, 107(3): 1099–1105
https://doi.org/10.1016/j.foodchem.2007.09.028 pmid: 26065777
5 Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition & Food Research, 2008, 52(4): 483–489
https://doi.org/10.1002/mnfr.200700282 pmid: 18210383
6 Hayashi T, Shibamoto T. Analysis of methyl glyoxal in foods and beverages. Journal of Agricultural and Food Chemistry, 1985, 33(6): 1090–1093
https://doi.org/10.1021/jf00066a018
7 Löbner J, Degen J, Henle T. Creatine is a scavenger for methylglyoxal under physiological conditions via formation of N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr). Journal of Agricultural and Food Chemistry, 2015, 63(8): 2249–2256
https://doi.org/10.1021/jf505998z pmid: 25655840
8 Dornadula S, Elango B, Balashanmugam P, Palanisamy R, Kunka Mohanram R. Pathophysiological insights of methylglyoxal induced type-2 diabetes. Chemical Research in Toxicology, 2015, 28(9): 1666–1674
https://doi.org/10.1021/acs.chemrestox.5b00171 pmid: 26250540
9 Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G. Reactivity, selectivity, and reaction mechanisms of aminoguanidine, hydralazine, pyridoxamine, and carnosine as sequestering agents of reactive carbonyl species: a comparative study. ChemMedChem, 2016, 11(16): 1778–1789
https://doi.org/10.1002/cmdc.201500552 pmid: 26891408
10 Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes J W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney International, 1999, 55(2): 389–399
https://doi.org/10.1046/j.1523-1755.1999.00302.x pmid: 9987064
11 Aldini G, Dalle-Donne I, Facino R M, Milzani A, Carini M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Medicinal Research Reviews, 2007, 27(6): 817–868
https://doi.org/10.1002/med.20073 pmid: 17044003
12 Thornalley P J. Monosaccharide autoxidation in health and disease. Environmental Health Perspectives, 1985, 64: 297–307
https://doi.org/10.1289/ehp.8564297 pmid: 3007096
13 Hayashi T, Namki M. Formation of two-carbon sugar fragment at an early stage of the browning reaction of sugar with amine. Agricultural and Biological Chemistry, 1980, 44(11): 2575–2580
14 Saadat D, Harrison D H. The crystal structure of methylglyoxal synthase from Escherichia coli. Structure, 1999, 7(3): 309–317
https://doi.org/10.1016/S0969-2126(99)80041-0 pmid: 10368300
15 Phillips S A, Thornalley P J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. European Journal of Biochemistry, 1993, 212(1): 101–105
https://doi.org/10.1111/j.1432-1033.1993.tb17638.x pmid: 8444148
16 Hopper D J, Cooper R A. The regulation of Escherichia coli methylglyoxal synthase: a new control site in glycolysis? FEBS Letters, 1971, 13(4): 213–216
https://doi.org/10.1016/0014-5793(71)80538-0 pmid: 11945670
17 Hopper D J, Cooper R A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochemical Journal, 1972, 128(2): 321–329
https://doi.org/10.1042/bj1280321 pmid: 4563643
18 Tötemeyer S, Booth N A, Nichols W W, Dunbar B, Booth I R. From famine to feast: the role of methylglyoxal production in Escherichia coli. Molecular Microbiology, 1998, 27(3): 553–562
https://doi.org/10.1046/j.1365-2958.1998.00700.x pmid: 9489667
19 Allaman I, Bélanger M, Magistretti P J. Methylglyoxal, the dark side of glycolysis. Frontiers in Neuroscience, 2015, 9: 23
https://doi.org/10.3389/fnins.2015.00023 pmid: 25709564
20 Thornalley P J. Dicarbonyl intermediates in the maillard reaction. Annals of the New York Academy of Sciences, 2005, 1043(1): 111–117
https://doi.org/10.1196/annals.1333.014 pmid: 16037229
21 Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. BioMed Research International, 2014, 2014(2014): 238485
22 Klöpfer A, Spanneberg R, Glomb M A. Formation of arginine modifications in a model system of Na-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal. Journal of Agricultural and Food Chemistry, 2011, 59(1): 394–401
https://doi.org/10.1021/jf103116c pmid: 21126021
23 Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research, 2013, 47(S1): 3–27
24 Oya T, Hattori N, Mizuno Y, Miyata S, Maeda S, Osawa T, Uchida K. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. Journal of Biological Chemistry, 1999, 274(26): 18492–18502
https://doi.org/10.1074/jbc.274.26.18492 pmid: 10373458
25 Shipanova I N, Glomb M A, Nagaraj R H. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Archives of Biochemistry and Biophysics, 1997, 344(1): 29–36
https://doi.org/10.1006/abbi.1997.0195 pmid: 9244378
26 Ahmed M U, Brinkmann Frye E, Degenhardt T P, Thorpe S R, Baynes J W. Nε-(Carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochemical Journal, 1997, 324(2): 565–570
https://doi.org/10.1042/bj3240565 pmid: 9182719
27 Nasiri R, Field M J, Zahedi M, Moosavi-Movahedi A A. Cross-linking mechanisms of arginine and lysine with a,b-dicarbonyl compounds in aqueous solution. Journal of Physical Chemistry A, 2011, 115(46): 13542–13555
https://doi.org/10.1021/jp205558d pmid: 21970517
28 Nagaraj R H, Shipanova N, Faust F M. Protein cross-linking by the Maillard reaction isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. Journal of Biological Chemistry, 196, 271(32): 19338–19345
29 Lo T W, Westwood M E, McLellan A C, Selwood T, Thornalley P J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. Journal of Biological Chemistry, 1994, 269(51): 32299–32305
pmid: 7798230
30 Nemet I, Varga-Defterdarović L. Methylglyoxal-derived b-carbolines formed from tryptophan and its derivates in the Maillard reaction. Amino Acids, 2007, 32(2): 291–293
https://doi.org/10.1007/s00726-006-0337-7 pmid: 16729192
31 Ramasamy R, Yan S F, Schmidt A M. Methylglyoxal comes of AGE. Cell, 2006, 124(2): 258–260
https://doi.org/10.1016/j.cell.2006.01.002 pmid: 16439200
32 de Arriba S G, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiology of Aging, 2007, 28(7): 1044–1050
https://doi.org/10.1016/j.neurobiolaging.2006.05.007 pmid: 16781798
33 Kaufmann E, Boehm B O, Süssmuth S D, Kientsch-Engel R, Sperfeld A, Ludolph A C, Tumani H. The advanced glycation end-product N epsilon-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neuroscience Letters, 2004, 371(2-3): 226–229
https://doi.org/10.1016/j.neulet.2004.08.071 pmid: 15519762
34 Southern L, Williams J, Esiri M M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurology, 2007, 7(1): 35
https://doi.org/10.1186/1471-2377-7-35 pmid: 17939855
35 Matafome P, Sena C, Seiça R. Methylglyoxal, obesity, and diabetes. Endocrine, 2013, 43(3): 472–484
https://doi.org/10.1007/s12020-012-9795-8 pmid: 22983866
36 Sena C M, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça R M. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 2012, 65(5): 497–506
https://doi.org/10.1016/j.phrs.2012.03.004 pmid: 22425979
37 Chang T, Wang R, Wu L. Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radical Biology & Medicine, 2005, 38(2): 286–293
https://doi.org/10.1016/j.freeradbiomed.2004.10.034 pmid: 15607912
38 Dhar A, Desai K, Kazachmov M, Yu P, Wu L. Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism: Clinical and Experimental, 2008, 57(9): 1211–1220
https://doi.org/10.1016/j.metabol.2008.04.014 pmid: 18702946
39 Ward R A, McLeish K R. Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrology, Dialysis, Transplantation, 2004, 19(7): 1702–1707
https://doi.org/10.1093/ndt/gfh271 pmid: 15150351
40 Kalapos M P, Littauer A, de Groot H. Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Archives of Toxicology, 1993, 67(5): 369–372
https://doi.org/10.1007/BF01973710 pmid: 8368947
41 Amicarelli F, Colafarina S, Cattani F, Cimini A, Di Ilio C, Ceru M P, Miranda M. Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radical Biology & Medicine, 2003, 35(8): 856–871
https://doi.org/10.1016/S0891-5849(03)00438-6 pmid: 14556850
42 Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radical Biology & Medicine, 1998, 25(1): 121–129
https://doi.org/10.1016/S0891-5849(98)00071-9 pmid: 9655530
43 Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K. Increase in three a,b-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochemical and Biophysical Research Communications, 1999, 256(1): 89–93
https://doi.org/10.1006/bbrc.1999.0221 pmid: 10066428
44 Jia X, Olson D J, Ross A R, Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB Journal, 2006, 20(9): 1555–1557
https://doi.org/10.1096/fj.05-5478fje pmid: 16723378
45 Oliveira L M, Lages A, Gomes R A, Neves H, Família C, Coelho A V, Quintas A. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochemistry, 2011, 12(1): 41
https://doi.org/10.1186/1471-2091-12-41 pmid: 21819598
46 Tóth A E, Tóth A, Walter F R, Kiss L, Veszelka S, Ózsvári B, Puskás L G, Heimesaat M M, Dohgu S, Kataoka Y, Rákhely G, Deli M A. Compounds blocking methylglyoxal-induced protein modification and brain endothelial injury. Archives of Medical Research, 2014, 45(8): 753–764
https://doi.org/10.1016/j.arcmed.2014.10.009 pmid: 25446614
47 Kuhla B, Lüth H J, Haferburg D, Boeck K, Arendt T, Münch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Annals of the New York Academy of Sciences, 2005, 1043(1): 211–216
https://doi.org/10.1196/annals.1333.026 pmid: 16037241
48 Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids, 42(4): 1221–1236
49 Vitek M P, Bhattacharya K, Glendening J M, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(11): 4766–4770
https://doi.org/10.1073/pnas.91.11.4766 pmid: 8197133
50 Naudí A, Jové M, Cacabelos D, Ayala V, Cabre R, Caro P, Gomez J, Portero-Otín M, Barja G, Pamplona R. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction. Amino Acids, 2013, 44(2): 361–371
https://doi.org/10.1007/s00726-012-1339-2 pmid: 22722543
51 Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxidants & Redox Signalling, 2009, 11(12): 3071–3109
https://doi.org/10.1089/ars.2009.2484 pmid: 19489690
52 Takamiya R, Takahashi M, Myint T, Park Y S, Miyazawa N, Endo T, Fujiwara N, Sakiyama H, Misonou Y, Miyamoto Y, Fujii J, Taniguchi N. Glycation proceeds faster in mutated Cu, Zn-superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB Journal, 2003, 17(8): 938–940
pmid: 12626432
53 Kikuchi S, Shinpo K, Ogata A, Tsuji S, Takeuchi M, Makita Z, Tashiro K. Detection of N epsilon-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2002, 3(2): 63–68
https://doi.org/10.1080/146608202760196020 pmid: 12215227
54 Kalousová M, Zima T, Tesař V, Dusilová-Sulková S, Škrha J. Advanced glycoxidation end products in chronic diseases-clinical chemistry and genetic background. Mutation Research, 2005, 579(1-2): 37–46 doi:10.1016/j.mrfmmm.2005.03.024
pmid: 16084533
55 Andersson A, Covacu R, Sunnemark D, Danilov A I, Dal Bianco A, Khademi M, Wallström E, Lobell A, Brundin L, Lassmann H, Harris R A. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. Journal of Leukocyte Biology, 2008, 84(5): 1248–1255
https://doi.org/10.1189/jlb.1207844 pmid: 18644848
56 Münch G, Lüth H J, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P. Crosslinking of a-synuclein by advanced glycation endproducts--an early pathophysiological step in Lewy body formation? Journal of Chemical Neuroanatomy, 2000, 20(3–4): 253–257
https://doi.org/10.1016/S0891-0618(00)00096-X pmid: 11207423
57 Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 2005, 64(9): 816–830
https://doi.org/10.1097/01.jnen.0000179050.54522.5a pmid: 16141792
58 Dukic-Stefanovic S, Schinzel R, Riederer P, Münch G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology, 2001, 2(1): 19–34
https://doi.org/10.1023/A:1010052800347 pmid: 11708614
59 Wu C H, Yen G C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3167–3173
https://doi.org/10.1021/jf048550u pmid: 15826074
60 Sang S, Shao X, Bai N, Lo C Y, Yang C S, Ho C T. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chemical Research in Toxicology, 2007, 20(12): 1862–1870
https://doi.org/10.1021/tx700190s pmid: 18001060
61 Lv L, Shao X, Chen H, Ho C T, Sang S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chemical Research in Toxicology, 2011, 24(4): 579–586
https://doi.org/10.1021/tx100457h pmid: 21344933
62 Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12152–12158
https://doi.org/10.1021/jf504132x pmid: 25412188
63 Shao X, Bai N, He K, Ho C T, Yang C S, Sang S. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chemical Research in Toxicology, 2008, 21(10): 2042–2050
https://doi.org/10.1021/tx800227v pmid: 18774823
64 Wang P, Chen H, Sang S. Trapping methylglyoxal by genistein and its metabolites in mice. Chemical Research in Toxicology, 2016, 29(3): 406–414
https://doi.org/10.1021/acs.chemrestox.5b00516 pmid: 26881724
65 Lo C Y, Hsiao W T, Chen X Y. Efficiency of trapping methylglyoxal by phenols and phenolic acids. Journal of Food Science, 2011, 76(3): H90–H96
https://doi.org/10.1111/j.1750-3841.2011.02067.x pmid: 21535836
66 Shao X, Chen H, Zhu Y, Sedighi R, Ho C T, Sang S. Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. Journal of Agricultural and Food Chemistry, 2014, 62(14): 3202–3210
https://doi.org/10.1021/jf500204s pmid: 24689984
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed