In recent decades, dairy farms have been exposed to wide variation in profit levels due to a considerable variability of milk price, and energy and feed costs. Consequently, it is necessary for the dairy industry to improve efficiency and productivity by adopting innovative technologies. The automated in-parlour milk analysis and separation is mainly useful to produce low or high quality milk and to monitor the animal health status. Milk with high levels of protein and fat contents may reduce the intensity of standardization during cheesemaking process, reducing production costs. The study aimed to evaluate the efficiency of real-time milk separation during milking and the performance of the milking machine after implementation of AfiMilk MCS. In addition, the economic aspects were assessed. The separation of milk required the existing milking parlors to be equipped with an additional milkline to allow channeling milk with low and high coagulation properties into two different cooling tanks. The results showed that the high coagulation milk fraction, compared to the bulk milk, increased in fat (from 18% to 43%) and protein (from 3% to 7%) concentration. The technology tested has given promising results showing reliability and efficiency in milk separation in real time with affordable implementation costs.
. [J]. Frontiers of Agricultural Science and Engineering, 2019, 6(2): 181-187.
Maria CARIA, Giuseppe TODDE, Antonio PAZZONA. Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms in Italy. Front. Agr. Sci. Eng. , 2019, 6(2): 181-187.
S R Fariña, A Alford, S C Garcia, W J Fulkerson. An integrated assessment of business risk for pasture-based dairy farm systems intensification. Agricultural Systems, 2013, 115: 10–20 https://doi.org/10.1016/j.agsy.2012.10.003
2
F Frick, J Sauer. Deregulation and productivity: empirical evidence on dairy production. American Journal of Agricultural Economics, 2018, 100(1): 354–378 https://doi.org/10.1093/ajae/aax074
3
G Todde, L Murgia, M Caria, A Pazzona. Dairy energy prediction (DEP) model: a tool for predicting energy use and related emissions and costs in dairy farms. Computers and Electronics in Agriculture, 2017, 135: 216–221 https://doi.org/10.1016/j.compag.2017.02.014
4
G Todde, L Murgia, M Caria, A Pazzona. A Comprehensive energy analysis and related carbon footprint of dairy farms, Part 2: investigation and modeling of indirect energy requirements. Energies, 2018, 11(2): 463 https://doi.org/10.3390/en11020463
5
S Neethirajan, S K Tuteja, S T Huang, D Kelton. Recent advancement in biosensors technology for animal and livestock health management. Biosensors & Bioelectronics, 2017, 98: 398–407 https://doi.org/10.1016/j.bios.2017.07.015
pmid: 28711026
6
C J Rutten, W Steeneveld, A G J M Oude Lansink, H Hogeveen. Delaying investments in sensor technology: the rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. Journal of Dairy Science, 2018, 101(8): 7650–7660 https://doi.org/10.3168/jds.2017-13358
pmid: 29729913
7
G Todde, L Murgia, M Caria, A Pazzona. A multivariate statistical analysis approach to characterize mechanization, structural and energy profile in Italian dairy farms. Energy Reports, 2016, 2: 129–134 https://doi.org/10.1016/j.egyr.2016.05.006
8
K Kaniyamattam, A De Vries. Agreement between milk fat, protein, and lactose observations collected from the Dairy Herd Improvement Association (DHIA) and a real-time milk analyzer. Journal of Dairy Science, 2014, 97(5): 2896–2908 https://doi.org/10.3168/jds.2013-7690
pmid: 24630652
I Halachmi, M Guarino. Precision livestock farming: a ‘per animal’ approach using advanced monitoring technologies. Animal, 2016, 10(9): 1482–1483 https://doi.org/10.1017/S1751731116001142
pmid: 27534883
11
M A Quist, S J LeBlanc, K J Hand, D Lazenby, F Miglior, D F Kelton. Milking-to-milking variability for milk yield, fat and protein percentage, and somatic cell count. Journal of Dairy Science, 2008, 91(9): 3412–3423 https://doi.org/10.3168/jds.2007-0184
pmid: 18765600
12
E R Pavel, C Gavan. Seasonal and milking to milking variations in cow milk fat, protein, and somatic cell counts. Notulae Scientia Biologicae, 2011, 3(2): 20–23 https://doi.org/10.15835/nsb325715
13
A Wedholm, L B Larsen, H Lindmark-Månsson, A H Karlsson, A Andrén. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. Journal of Dairy Science, 2006, 89(9): 3296–3305 https://doi.org/10.3168/jds.S0022-0302(06)72366-9
pmid: 16899662
14
M De Marchi, G Bittante, R Dal Zotto, C Dalvit, M Cassandro. Effect of Holstein Friesian and Brown Swiss breeds on quality of milk and cheese. Journal of Dairy Science, 2008, 91(10): 4092–4102 https://doi.org/10.3168/jds.2007-0788
pmid: 18832237
15
M G Manca, J Serdino, G Gaspa, P Urgeghe, I Ibba, M Contu, P Fresi, N P P Macciotta. Derivation of multivariate indices of milk composition, coagulation properties, and individual cheese yield in dairy sheep. Journal of Dairy Science, 2016, 99(6): 4547–4557 https://doi.org/10.3168/jds.2015-10589
pmid: 27060831
16
J I Weller, E Ezra. Genetic and phenotypic analysis of daily Israeli Holstein milk, fat, and protein production as determined by a real-time milk analyzer. Journal of Dairy Science, 2016, 99(12): 9782–9795 https://doi.org/10.3168/jds.2016-11155
pmid: 27720152
17
M J Auldist, S Coats, G L Rogers, G H McDowell. Changes in the composition of milk from healthy and mastitic dairy cows during the lactation cycle. Australian Journal of Experimental Agriculture, 1995, 35(4): 427–436 https://doi.org/10.1071/EA9950427
18
K Svennersten-Sjaunja, L O Sjaunja, J Bertilsson, H Wiktorsson. Use of regular milking records versus daily records for nutrition and other kinds of management. Livestock Production Science, 1997, 48(3): 167–174 https://doi.org/10.1016/S0301-6226(97)00023-7
19
S Tao, J W Bubolz, B C do Amaral, I M Thompson, M J Hayen, S E Johnson, G E Dahl. Effect of heat stress during the dry period on mammary gland development. Journal of Dairy Science, 2011, 94(12): 5976–5986 https://doi.org/10.3168/jds.2011-4329
pmid: 22118086
20
G Leitner, U Merin, L Lemberskiy-Kuzin, D Bezman, G Katz. Real-time visual/near-infrared analysis of milk-clotting parameters for industrial applications. Animal, 2012, 6(7): 1170–1177 https://doi.org/10.1017/S175173111100245X
pmid: 23031479
21
G Leitner, U Merin, S Jacoby, D Bezman, L Lemberskiy-Kuzin, G Katz. Real-time evaluation of milk quality as reflected by clotting parameters of individual cow’s milk during the milking session, between day-to-day and during lactation. Animal, 2013, 7(9): 1551–1558 https://doi.org/10.1017/S1751731113000542
pmid: 23537499
22
G Leitner, Y Lavi, U Merin, L Lemberskiy-Kuzin, G Katz. Online evaluation of milk quality according to coagulation properties for its optimal distribution for industrial applications. Journal of Dairy Science, 2011, 94(6): 2923–2932 https://doi.org/10.3168/jds.2010-3946
pmid: 21605762
23
G Todde, M Caria, F Gambella, A Pazzona. Energy and carbon impact of precision livestock farming technologies implementation in the milk chain: from dairy farm to cheese factory. Agriculture, 2017, 7(10): 1–11 https://doi.org/10.3390/agriculture7100079
24
M Caria, G Todde, A Pazzona. Modeling the collection and delivery of sheep milk: a tool to optimize the logistics costs of cheese factories. Agriculture, 2018, 8(5): 1–11 https://doi.org/10.3390/agriculture8010005
25
S P Singh, S Ghosh, G P Lakhani, A Jain, B Roy. Precision dairy farming: the next dairy marvel. Journal of Veterinary Science & Technology, 2014, 5(2): 164 https://doi.org/10.4172/2157-7579.1000164
26
I Werkheiser. Precision livestock farming and farmers’ duties to livestock. Journal of Agricultural & Environmental Ethics, 2018, 31(2): 181–195 https://doi.org/10.1007/s10806-018-9720-0
27
E Tullo, A Finzi, M Guarino. Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 2019, 650(Pt 2): 2751–2760 https://doi.org/10.1016/j.scitotenv.2018.10.018
pmid: 30373053
28
Associazione Regionale Allevatori Sardegna (ARAS). Laboratorio Analisi. Available at ARAS Website on October 1, 2018
29
G Katz, U Merin, D Bezman, S Lavie, L Lemberskiy-Kuzin, G Leitner. Real-time evaluation of individual cow milk for higher cheese-milk quality with increased cheese yield. Journal of Dairy Science, 2016, 99(6): 4178–4187 https://doi.org/10.3168/jds.2015-10599
pmid: 27016823
30
EC. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Official Journal of the European Union, 2004: L139. 30.4.2004
31
A Lombardo, C Boselli, S Amatiste, S Ninci, C Frazzoli, R Dragone, A De Rossi, G Grasso, A Mantovani, G Brajon. From invention to innovation: risk analysis to integrate one health technology in the dairy farm. Frontiers in Public Health, 2017, 5: 302 https://doi.org/10.3389/fpubh.2017.00302
pmid: 29218304
32
ISO 5707:2007. Milking machine installations—Construction and performance
33
ISO 6690:2007. Milking machine installations—Mechanical tests
34
G A Mein. Basic mechanics and testing of milking systems. In: Bramley A J, Dodd F H, Mein G A, Bramley J A, editors. Machine Milking and Lactation. Huntingdon: Insight Books, 1992, 235–284