Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (3) : 175-178    https://doi.org/10.15302/J-FASE-2014019
LETTER
Genetic variability of Appaloosa horses: a study of a closed breeding population from Argentina
Claudia Malena CORBI-BOTTO1,2,*(),Sebastian Andres SADABA1,3,Elina Ines FRANCISCO1,Paula Belen KALEMKERIAN1,Juan Pedro LIRON1,Egle Etel VILLEGAS-CASTAGNASSO1,Guillermo GIOVAMBATTISTA1,Pilar PERAL-GARCIA1,Silvina DIAZ1
1. Instituto de Genética Veterinaria “Ing. Fernando N Dulout”(IGEVET) –CCT La Plata –CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
2. Research Fellow from Consejo Nacional de Invetigaciones Cientificas y Tecnicas (CONICET), Argentina
3. Research Fellow from Universidad Nacional de la Plata (UNLP), Argentina
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The genetic diversity and structure of 72 Appaloosa horses belonging to a closed breeding population from an ecological reserve in Buenos Aires, Argentina, was investigated using eight microsatellite markers from the International Society for Animal Genetics panel. Our data showed that this Appaloosa horse population had an elevated degree of genetic diversity (He= 0.746) and did not present a significant increase of homozygous individuals (FIS~0). However, the short tandem repeats, AHT5, ASB2, HTG10 and VHL20, were not in Hardy–Weinberg equilibrium (P-value<0.05). Genetic relationships between this population and other well known horse breeds showed that Appaloosa horses from Argentina could have had their origin in the horses of the Nez Perce’s people in Idaho while other Appaloosa horses may have had influences from Andalusian and Lusitano breeds. This closed breeding population conserves an important degree of Appaloosa genetic diversity and notwithstanding its particular breeding characteristics, represents a valuable genetic resource for conservation.

Keywords horse      genetic diversity      microsatellite      Appaloosa      population structure      conservation     
Corresponding Author(s): Claudia Malena CORBI-BOTTO   
Online First Date: 01 December 2014    Issue Date: 27 January 2015
 Cite this article:   
Claudia Malena CORBI-BOTTO,Sebastian Andres SADABA,Elina Ines FRANCISCO, et al. Genetic variability of Appaloosa horses: a study of a closed breeding population from Argentina[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 175-178.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014019
https://academic.hep.com.cn/fase/EN/Y2014/V1/I3/175
Heterozygosity
PopulationIDNExpectedObservedNaFISHWE*Reference
Appaloosa (ARG)AP720.7460.6977.630.0664This study
AppaloosaAPP990.7650.7617.630.0052[5]
ArabianARA1000.6760.6666.500.0151[5]
ThoroughbredTHO540.7130.6985.250.0211[5]
AndalusianAND670.7210.7116.880.0154[5]
HaflingerHAF650.7110.6905.500.0151[5]
DutchDUT730.6740.7246.00-0.0230[5]
LusitanoLUS430.7710.7886.630.0291[5]
SandardbredSTA1000.7490.7386.63-0.0750[5]
Tab.1  The genetic variability of 9 horse populations
Fig.1  Model-based clustering of 9 horse populations using STRUCTURE software. The 8 STR loci genotypes were analyzed using an admixture model with a burnin length of 100000 followed by 1000000 Markov Chain Monte Carlo (MCMC) replicates. Each animal is represented by a single vertical line divided into K colors, where K is the number of clusters assumed and the colors show the estimated individual proportions of cluster membership. Results are shown for (a) K = 2 and (b) K = 4. AP: Appaloosa Argentina; APP: Appaloosa; ARA: Arab; THO: Thoroughbred; STA: Standardbred; AND: Andalusian; LUS: Lusitan; HAF: Haflinger; DUT: Dutch Horse; *: Source [5].
1 Bruford M W, Bradley D G, Luikart G. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 2003, 4(11): 900-910
https://doi.org/10.1038/nrg1203 pmid: 14634637
2 Rosenberg N A, Li L M, Ward R, Pritchard J K. Informativeness of genetic markers for inference of ancestry. American Journal of Human Genetics, 2003, 73(6): 1402-1422
https://doi.org/10.1086/380416 pmid: 14631557
3 Hoffmann I, Marsan P A, Barker S F, Cothran E G, Hanotte O, Lenstra J A, Milan D, Weigend S, Simianer H. New MoDAD marker sets to be used in diversity studies for the major farm animal species: recommendations of a joint ISAG/FAO working group. In: Proceedings of the 29th International Conference on Animal Genetics, 2004, 11-16
4 Rousset F. GENEPOP ’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 2008, 8(1): 103-106
https://doi.org/10.1111/j.1471-8286.2007.01931.x pmid: 21585727
5 van de Goor L H P, van Haeringen W A, Lenstra J A. Population studies of 17 equine STR for forensic and phylogenetic analysis. Animal Genetics, 2011, 42(6): 627-633
https://doi.org/10.1111/j.1365-2052.2011.02194.x pmid: 22035004
6 Pritchard J K, Stephens M, Donnely P Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959
7 Bigi D, Zambonelli P, Perrotta G, Blasi M. The Ventasso Horse: genetic characterization by microsatellites markers. Italian Journal of Animal Science, 2007, 6(1s): 50-52
8 Luís C, Juras R, Oom M M, Cothran E G. Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Animal Genetics, 2007, 38(1): 20-27
https://doi.org/10.1111/j.1365-2052.2006.01545.x pmid: 17257184
9 Caballero A, Toro M A. Analysis of genetic diversity for the management of conserved subdivided populations. Conservation Genetics, 2002, 3(3): 289-299
https://doi.org/10.1023/A:1019956205473
10 Ollivier L, Foulley J L. Aggregate diversity: new approach combining within- and between-breed genetic diversity. Livestock Production Science, 2005, 95(3): 247-254
https://doi.org/10.1016/j.livprodsci.2005.01.005
11 Aberle K S, Hamann H, Dr?gemüller C, Distl O. Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers. Animal Genetics, 2004, 35(4): 270-277
https://doi.org/10.1111/j.1365-2052.2004.01166.x pmid: 15265065
12 Plante Y, Vega-Pla J L, Lucas Z, Colling D, de March B, Buchanan F. Genetic diversity in a feral horse population from Sable Island, Canada. Journal of Heredity, 2007, 98(6): 594-602
https://doi.org/10.1093/jhered/esm064 pmid: 17855732
13 Garcia-Dory M A. Evolución reciente de la ganadería en Espa?a. Quercus, 1987, 107: 6-9 (in Spanish)
14 Solis A, Jugo B M, Mériaux J C, Iriondo M, Mazin L I, Aguirre A I, Vicario A, Estomba A. Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation. Journal of Heredity, 2005, 96(6): 670-678
https://doi.org/10.1093/jhered/esi123 pmid: 16267169
15 Luikart G, Allendorf F W, Cornuet J M, Sherwin W B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 1998, 89(3): 238-247
https://doi.org/10.1093/jhered/89.3.238 pmid: 9656466
[1] Xuexue LIU, Yuehui MA, Lin JIANG. Genomic regions under selection for important traits in domestic horse breeds[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 289-294.
[2] Xunhe HUANG,Jinfeng ZHANG,Danlin HE,Xiquan ZHANG,Fusheng ZHONG,Weina LI,Qingmei ZHENG,Jiebo CHEN,Bingwang DU. Genetic diversity and population structure of indigenous chicken breeds in South China[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 97-101.
[3] Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG. The effect of conservation tillage on crop yield in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 179-185.
[4] Manosh Kumar BISWAS,Peng CHEN,Mohamed Hamdy AMAR,Xiuxin DENG. Novel polymorphic EST-based microsatellite marker isolation and characterization from Poncirus trifoliata (Rutaceae)[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed