Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (3) : 230-236    https://doi.org/10.15302/J-FASE-2015071
RESEARCH ARTICLE
Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography
Ruining WANG1,Yubao ZHI2,Junqing GUO2,Qingmei LI2,Li WANG2,Jifei YANG2,Qianyue JIN2,Yinbiao WANG2,Yanyan YANG2,Guangxu XING2,Songlin QIAO2,Mengmeng ZHAO1,Ruiguang DENG2,Gaiping ZHANG1,*()
1. College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
2. Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
 Download: PDF(645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Large-scale production of cell culture-based classical swine fever virus (CSFV) vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF) and size-exclusion chromatography (SEC), and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM), infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR). TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10−4.25 TCID50·mL−1 to 3.0×10−6.25 TCID50·mL−1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40–60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05). The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses.

Keywords classical swine fever virus      virus purification      tangential-flow filtration      size-exclusion chromatography     
Corresponding Author(s): Gaiping ZHANG   
Just Accepted Date: 09 October 2015   Online First Date: 27 October 2015    Issue Date: 10 November 2015
 Cite this article:   
Ruining WANG,Yubao ZHI,Junqing GUO, et al. Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 230-236.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015071
https://academic.hep.com.cn/fase/EN/Y2015/V2/I3/230
Fig.1  Schematic representation of tangential-flow filtration
Fig.2  Elution profile of size-exclusion chromatography and detection of CSFV by FQ-PCR. (a) The existence of CSFV in samples at various purification stages were monitored by FQ-PCR. 1, Virus stock; 2, ultrafiltration retentate; 3, ultrafiltration penetration; 4, peak 1; 5, peak 2; 6, ultracentrifugation-prepared virus; (b) TFF-concentrated CSFV was loaded onto a Sepharose 4 Fast Flow column (100 mL bed volume). Peak 1 consisted mainly of CSFV particles and peak 2 was contaminants from host cells or cell culture media.
Purification stageTotal volume/mLParticles numbers/mLVirus recovery a /%Virus titer /TCID50·mL−1
Virus stock5001.36×10101005.5×10−4.25
UF rententate203.35×101198.53.4×10−6.35
UF permeate485N/AN/AN/A
Flow-through peak 1202.89×101186.23.0×10−6.25
Flow-through peak 2205.07×102N/A1.0×10−1
Ultracentrifugation202.56×101185.84.09×10−5
Tab.1  Monitoring of virus particles at various stages of purification
Fig.3  Analysis of the purified CSFV by TFF-SEC by SDS-PAGE (a) and immunoblotting (b). (a) SDS-PAGE: lane 1, peak 1 sample; lane 2, peak 2 sample; M, pre-stained protein molecular marker; (b) immunoblotting: lane 3, peak 2 sample; lane 4, peak 1 sample.
Fig.4  Immunofluorescence assay. (a) Monolayer of PK-15 cells infected with TFF-SEC-purified CSFV; (b) monolayer of PK-15 cells infected with ultracentrifugation-prepared CSFV. Mock-uninfected PK-15 cells were used as negative control.
Fig.5  Electron microscopy of the purified CSFV particles. (a) CSFV particles purified by TFF-SEC are spherical with a diameter of 50 nm; (b) CSFV prepared by ultracentrifugation show few visible intact virions and a significant amount of contaminating substances is evident as the gray background. Primary magnification of 100000× and 300000×.
Fig.6  Comparison of antibody responses. Antibody levels from immunization with CSFV purified from TFF-SEC (group A) and ultracentrifugation (group B) were tested with the strip test and compared. Mice immunized with PBS in group C did not produce any antibody against CSFV.
1 Horzinek  M C. Pestiviruses—taxonomic perspectives. Archives of Virology. 1991, 3(Suppl. 3): 1–5
https://doi.org/10.1007/978-3-7091-9153-8_1 pmid: 9210920
2 Deng  R, Brock  K V. Molecular cloning and nucleotide sequence of a pestivirus genome, noncytopathic bovine viral diarrhea virus strain SD-1. Virology, 1992, 191(2): 867–879
https://doi.org/10.1016/0042-6822(92)90262-N pmid: 1333126
3 Thiel  H J, Stark  R, Weiland  E, Rümenapf  T, Meyers  G. Hog cholera virus: molecular composition of virions from a pestivirus. Journal of Virology, 1991, 65(9): 4705–4712
pmid: 1870198
4 Suradhat  S, Damrongwatanapokin  S, Thanawongnuwech  R. Factors critical for successful vaccination against classical swine fever in endemic areas. Veterinary Microbiology, 2007, 119(1): 1–9
https://doi.org/10.1016/j.vetmic.2006.10.003 pmid: 17097243
5 Cunliffe  H R, Rebers  P A. The purification and concentration of hog cholera virus. Canadian Journal of Comparative Medicine, 1968, 32(3): 486–492
pmid: 15846899
6 Laude  H. Improved method for the purification of hog cholera virus grown in tissue culture. Archives of Virology, 1977, 54(1−2): 41–51
https://doi.org/10.1007/BF01314377 pmid: 560840
7 Loa  C C, Lin  T L, Wu  C C, Bryan  T A, Thacker  H L, Hooper  T, Schrader  D. Purification of turkey coronavirus by Sephacryl size-exclusion chromatography. Journal of Virological Methods, 2002, 104(2): 187–194
https://doi.org/10.1016/S0166-0934(02)00069-1 pmid: 12088828
8 Anderson  R, Macdonald  I, Corbett  T, Whiteway  A, Prentice  H G. A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction. Journal of Virological Methods, 2000, 85(1−2): 23–34
https://doi.org/10.1016/S0166-0934(99)00150-0 pmid: 10716335
9 Guo  Y, Cheng  A, Wang  M, Zhou  Y. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation. Journal of Virological Methods, 2009, 161(1): 1–6
https://doi.org/10.1016/j.jviromet.2008.12.017 pmid: 19152808
10 Kalbfuss  B, Genzel  Y, Wolff  M, Zimmermann  A, Morenweiser  R, Reichl  U. Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines. Biotechnology and Bioengineering, 2007, 97(1): 73–85
https://doi.org/10.1002/bit.21139 pmid: 16921531
11 Kalbfuss  B, Wolff  M, Morenweiser  R, Reichl  U. Purification of cell culture-derived human influenza A virus by size-exclusion and anion-exchange chromatography. Biotechnology and Bioengineering, 2007, 96(5): 932–944
https://doi.org/10.1002/bit.21109 pmid: 16937411
12 Michel  J P, Gingery  M, Lavelle  L. Efficient purification of bromoviruses by ultrafiltration. Journal of Virological Methods, 2004, 122(2): 195–198
https://doi.org/10.1016/j.jviromet.2004.09.005 pmid: 15542144
13 Nayak  D P, Lehmann  S, Reichl  U. Downstream processing of MDCK cell-derived equine influenza virus. Journal of Chromatography B, 2005, 823(2): 75–81
https://doi.org/10.1016/j.jchromb.2005.05.022 pmid: 16009601
14 Wickramasinghe  S R, Kalbfuß  B, Zimmermann  A, Thom  V, Reichl  U. Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification. Biotechnology and Bioengineering, 2005, 92(2): 199–208
https://doi.org/10.1002/bit.20599 pmid: 16041807
15 Transfiguracion  J, Jaalouk  D E, Ghani  K, Galipeau  J, Kamen  A. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Human Gene Therapy, 2003, 14(12): 1139–1153
https://doi.org/10.1089/104303403322167984 pmid: 12908966
16 de las Mercedes Segura  M, Kamen  A, Trudel  P, Garnier  A. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnology and Bioengineering, 2005, 90(4): 391–404
https://doi.org/10.1002/bit.20301 pmid: 15812800
17 Reed  L J, Muench  H. A simple method for estimating fifty percent endpoints. American Journal of Hygiene, 1938, 27: 493–497
18 Leifer  I, Blome  S, Beer  M, Hoffmann  B. Development of a highly sensitive real-time RT-PCR protocol for the detection of Classical swine fever virus independent of the 5′ untranslated region. Journal of Virological Methods, 2011, 171(1): 314–317
https://doi.org/10.1016/j.jviromet.2010.11.014 pmid: 21111760
19 Li  X, Wang  L, Shi  X, Zhao  D, Yang  J, Yang  S, Zhang  G. Development of an immunochromatographic strip for rapid detection of antibodies against classical swine fever virus. Journal of Virological Methods, 2012, 180(1−2): 32–37
https://doi.org/10.1016/j.jviromet.2011.12.006 pmid: 22207080
20 Matanin  B M, Huang  Y, Meng  X J, Zhang  C. Purification of the major envelop protein GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) from native virions. Journal of Virological Methods, 2008, 147(1): 127–135
https://doi.org/10.1016/j.jviromet.2007.08.018 pmid: 17913250
21 Ali  A, Roossinck  M J. Rapid and efficient purification of Cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation. Journal of Virological Methods, 2007, 141(1): 84–86
https://doi.org/10.1016/j.jviromet.2006.11.038 pmid: 17188758
22 Karger  A, Bettin  B, Granzow  H, Mettenleiter  T C. Simple and rapid purification of alphaherpesviruses by chromatography on a cation exchange membrane. Journal of Virological Methods, 1998, 70(2): 219–224
https://doi.org/10.1016/S0166-0934(97)00200-0 pmid: 9562416
23 Opitz  L, Salaklang  J, Büttner  H, Reichl  U, Wolff  M W. Lectin-affinity chromatography for downstream processing of MDCK cell culture derived human influenza A viruses. Vaccine, 2007, 25(5): 939–947
https://doi.org/10.1016/j.vaccine.2006.08.043 pmid: 17011087
24 Horzinek  M, Reczko  E, Petzoldt  K. On the morphology of hog cholera virus. Archiv fur die Gesamte Virusforschung, 1967, 21(3): 475–478
https://doi.org/10.1007/BF01241748 pmid: 4971494
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed