Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 368-374    https://doi.org/10.15302/J-FASE-2016120
RESEARCH ARTICLE
Optimum nitrogen fertilization of Calophyllum inophyllum seedlings under greenhouse conditions
Wentao ZOU1,Ruifeng JIA2,Jinchang YANG1(),Rongsheng LI1,Guangtian YIN1
1. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
2. Rural Work Bureau of High Tech Industry Development Zone in Huizhou, Huizhou 516005, China
 Download: PDF(394 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A greenhouse pot experiment was conducted to study the effects of nitrogen fertilization on Calophy- llum inophyllum seedlings grown with 0, 50, 100, 150, 200, 300, 400 and 600 mg N per seedling according to exponential functions. Seedling height, root collar diameter, leaf area and total biomass increased with increasing fertilization from 0 to 200 mg N per seedling and decreased with further increase in fertilization from 300 to 600 mg N per seedling. The net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate of C. inophyllum seedlings showed a unimodal parabolic trend, with peak values of 7.29 mmol·m2·s1, 0.071 mol·m2·s1, 220 mmol·mol1 and 1.34 mmol·m2·s1, respectively, when the rate of fertilization was 200 mg N per seedling. Photosynthetic gas exchange parameters were significantly different among nitrogen treatments. Based on the critical values of leaf N and P concentration and N/P ratio, the optimum amount of nitrogen of C. inophyllum seedlings was 200–400 mg per seedling for leaf N and P concentration, and 100–400 mg per seedling for N/P ratio. It was concluded that 200–400 mg N per seedling was the most suitable nitrogen range for C. inophyllum seedlings.

Keywords Calophyllum inophyllum      growth      nitrogen fertilization      nutrient status      photosynthesis     
Corresponding Author(s): Jinchang YANG   
Just Accepted Date: 09 December 2016   Online First Date: 04 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Wentao ZOU,Ruifeng JIA,Jinchang YANG, et al. Optimum nitrogen fertilization of Calophyllum inophyllum seedlings under greenhouse conditions[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 368-374.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016120
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/368
Week Nitrogen fertilizer per seedling/mg
N1 N2 N3 N4 N5 N6 N7 N8
0 0 2.6 4.0 4.9 5.7 6.8 7.6 8.9
2 0 2.8 4.6 5.7 6.7 8.2 9.5 11.3
4 0 3.0 5.0 6.6 7.9 10.0 11.8 14.6
6 0 3.6 5.7 7.6 9.3 12.2 14.7 18.8
8 0 3.6 6.4 8.8 11.0 14.9 18.3 24.2
10 0 3.9 7.2 10.3 13.0 18.1 22.8 31.1
12 0 4.2 8.1 11.9 15.4 22.1 28.4 39.9
14 0 4.5 9.2 13.8 18.2 26.9 35.3 51.3
16 0 4.9 10.3 15.9 21.6 32.8 44.0 66.0
18 0 5.3 11.6 18.4 25.5 39.9 54.7 84.8
20 0 5.8 13.1 21.4 30.1 48.7 68.2 109.0
22 0 6.2 14.8 24.7 35.6 59.3 84.9 140.1
Total 0 50.0 100.0 150.0 200.0 300.0 400.0 600.0
Tab.1  Program for exponential nitrogen fertilization of Calophyllum inophyllum seedlings
Nitrogen treatment Nitrogen fertilizer per seedling/mg Seedling height/cm Root collar diameter/cm Leaf area/cm2
N1 0 13.9±0.80d 0.52±0.01f 127±11.3g
N2 50 17.2±2.15c 0.55±0.03de 193±19.0f
N3 100 18.7±0.84bc 0.56±0.06cde 242±17.8de
N4 150 21.8±2.14a 0.63±0.01ab 312±15.1ab
N5 200 22.1±1.51a 0.65±0.01a 327±15.0a
N6 300 21.0±0.22ab 0.61±0.01abc 289±6.4bc
N7 400 20.4±0.47ab 0.60±0.02bcd 266±13.0cd
N8 600 19.6±2.28abc 0.59±0.01bcd 234±21.8e
Tab.2  Effects of nitrogen fertilizer treatments on growth of Calophyllum inophyllum seedlings
Fig.1  Effects of nitrogen fertilizer treatments on biomass of Calophyllum inophyllum seedlings. Different letters above the columns indicate significant differences between treatments according to Duncan’s Multiple Range Test (P<0.05). Data are means±SE (n = 4).
Fig.2  Effects of nitrogen fertilizer treatments on photosynthetic gas exchange parameters of Calophyllum inophyllum seedlings. (a) Net photosynthetic rate; (b) stomatal conductance; (c) intercellular CO2 concentration; (d) transpiration rate. Different letters indicate significant differences between treatments according to Duncan’s Multiple Range Test (P<0.05). Data are means±SE (n = 4).
Nitrogen treatment Nitrogen fertilizer per seedling/mg Leaf N concentration/(mg·g-1) Leaf biomass per seedling/g Leaf N content per seedling/mg
N1 0 6.3±0.37f 2.06±0.08c 12.9±0.95d
N2 50 7.8±0.57ef 3.48±0.22b 27.3±3.16c
N3 100 9.0±0.36e 3.66±0.46b 32.8±3.44c
N4 150 9.8±0.12de 5.02±0.26a 49.0±2.73b
N5 200 11.1±0.51cd 5.16±0.29a 57.4±5.90ab
N6 300 11.8±0.72c 4.38±0.22ab 51.7±3.35ab
N7 400 15.0±0.89b 4.23±0.58ab 62.9±6.47a
N8 600 19.4±0.97a 3.30±0.32b 63.5±3.02a
Tab.3  Effects of nitrogen fertilizer treatments on leaf nutrient situation of Calophyllum inophyllum seedlings
Fig.3  The quadratic relationship between leaf N and P concentrations, N/P ratio and biomass of Calophyllum inophyllum seedlings. (a) The relationship between leaf N and biomass; (b) the relationship between leaf P and biomass; (c) the relationship between leaf N/P ration and biomass.
Dependent
variable
Independent
variable
Regressive equation R value Significant
(Y)
Biomass
X1(N) Y = - 0.0675X12 + 1.791X1- 2.248 0.735 P<0.01
X2(P) Y = - 63.02X22 + 76.33X2- 13.08 0.732 P<0.01
X3(K) Y = - 0.0505X32 + 1.274X3+ 0.8612 0.346 P>0.05
X4(N/P) Y = - 0.1009X42 + 4.191X4- 34.59 0.687 P<0.01
X5(N/K) Y = - 1.319X52 + 9.141X5+ 0.4887 0.623 P>0.05
X6(P/K) Y = 2139X62- 51.49X6+ 5.565 0.549 P>0.05
Tab.4  Regression equations for nutrient concentration or ratio versus biomass of Calophyllum inophyllum seedlings
1 Burdett A. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research, 1990, 20(4): 415–427
https://doi.org/10.1139/x90-059
2 Nambiar E K S, Sands R. Competition for water and nutrients in forests.Canadian Journal of Forest Research , 1993, 23(10): 1955–1968
https://doi.org/10.1139/x93-247
3 Stumpf B, Yan F, Honermeier B. Nitrogen fertilization and maturity influence the phenolic concentration of wheat grain (Triticumaestivum). Journal of Plant Nutrition and Soil Science, 2015, 178(1): 118–125
https://doi.org/10.1002/jpln.201400139
4 Imo M, Timmer V R. Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules. Soil Science Society of America Journal, 1992, 56(3): 927–934
https://doi.org/10.2136/sssaj1992.03615995005600030041x
5 Paul Jackson D, Kasten Dumroese R, Barnett J P. Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on outplanting performance. Forest Ecology and Management, 2012, 265(1): 1–12
https://doi.org/10.1016/j.foreco.2011.10.018
6 Juntunen M L, Hammar T, Rikala R. Leaching of nitrogen and phosphorus during production of forest seedlings in containers. Journal of Environmental Quality, 2002, 31(6): 1868–1874
https://doi.org/10.2134/jeq2002.1868
7 Imo M, Timmer V R. Growth, nutrient allocation and water relations of mesquite seedlings at differing fertilization schedules. Forest Ecology and Management, 1992, 55(1–4): 279–294
https://doi.org/10.1016/0378-1127(92)90106-J
8 Ingestad T, Lund A B. Theory and techniques for steady state mineral nutrition and growth of plants. Scandinavian Journal of Forest Research, 1986, 1(1–4): 439–453
https://doi.org/10.1080/02827588609382436
9 Timmer V R, Armstrong G, Miller B. Steady-state nutrient preconditioning and early outplanting performance of containerized black spruce seedlings. Canadian Journal of Forest Research, 1991, 21(5): 585–594
https://doi.org/10.1139/x91-080
10 Quoreshi A M, Timmer V R. Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Canadian Journal of Forest Research, 2000, 30(5): 744–752
https://doi.org/10.1139/x00-003
11 Salifu K F, Timmer V R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research, 2003, 33(7): 1287–1294
https://doi.org/10.1139/x03-057
12 McAlister J A, Timmer V R. Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiology, 1998, 18(3): 195–202
https://doi.org/10.1093/treephys/18.3.195
13 Rytter L, Ericsson T, Rytter R. Effects of demand-driven fertilization on nutrient use, root: plant ratio and field performance of Betulapendula and Piceaabies. Scandinavian Journal of Forest Research, 2003, 18(5): 401–415
https://doi.org/10.1080/02827580310001931
14 Chen L, Zeng J, Xu D P, Zhao Z G, Guo J J, Lin K Q, Sha E. Effects of exponential nitrogen loading on growth and foliar nutrient status of Betula alnoidesseedlings. Sceintia Silvae Sinicae, 2010, 46(5): 35–40
15 Dweck A C, Meadows T. Tamanu (Calophyllum inophyllum) – the African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 2002, 24(6): 341–348
https://doi.org/10.1046/j.1467-2494.2002.00160.x
16 Wu D. Plant Directory in the coastal island in Hainan and Guangdong province.Beijing: Science Press,1994.
17 Ji X, Zeng D, Huang S. Calophyllum inophyllum, a tree species for landscape in south subtropical zone. Chinese Journal of Tropical Agriculture, 2004, 24(6): 44–45 (in Chinese)
18 Pradhan L, Pattnaik R, Sahoo A. Calophyllum inophyllum—an economic tree in coastal tract of Orissa. Environment and Ecology, 1998, 16(2): 476–477
19 Yang X, Fang J. Analysis of the development and application value of Calophyllum inophyllum L. Chinese Wild Plant Resources, 2001, 20(6): 33–35 (in Chinese)
20 Ito C, Itoigawa M, Miyamoto Y, Rao K S, Takayasu J, Okuda Y, Mukainaka T, Tokuda H, Nishino H, Furukawa H. A new biflavonoid from Calophyllum panciflorum with antitumor-promoting activity. Journal of Natural Products, 1999, 62(12): 1668–1671
https://doi.org/10.1021/np990065j
21 Pawar K D, Joshi S P, Bhide S R, Thengane S R. Pattern of anti-HIV dipyranocoumarin expression in callus cultures of Calophyllum inophyllum Linn. Journal of Biotechnology, 2007, 130(4): 346–353
https://doi.org/10.1016/j.jbiotec.2007.04.024
22 Friday J, Okano D. Calophyllum inophyllum(kamani). Species Profiles for Pacific Island Agroforestry, 2006, 2(1): 1–17
23 Su Y, He L. Study on the components of fat acids in the oil from seeds of Calophyllum inophyllum L. Chinese Journal of Analysis Laboratory, 2007, 26(6): 62–64 (in Chinese)
24 Timmer V R, Armstrong G. Growth and nutrition of containerized Pinus resinosa seedlings at varying moisture regimes. New Forests, 1989, 3(2): 171–180
https://doi.org/10.1007/BF00021580
25 Dumroese R K, Page-Dumroese D S, Salifu K F, Jacobs D F. Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance. Canadian Journal of Forest Research, 2005, 35(12): 2961–2967
https://doi.org/10.1139/x05-226
26 Shedley E, Dell B, Grove T. Diagnosis of nitrogen deficiency and toxicity of Eucalyptus globulus seedlings by foliar analysis. Plant and Soil, 1995, 177(2): 183–189
https://doi.org/10.1007/BF00010124
27 Huang Y Z, Feng Z W, Li Z X, Li X D, Yang B Q. Diagnosis of foliar nutrients (N, P, K, Ca, Mg, B) of young Eucalyptus urophylla trees. Acta Ecologica Sinica, 2002, 22(8): 1254–1259 (in Chinese)
28 Li Y, Liu X, Ma J, Shi G, Yang S. Effects of topdressing nitrogen on growth and nutrient status in leaves of Phoebe chekiangensis container seedlings. Journal of Nanjing Forestry University, 2016, 40(1): 33–38
29 Wu F Z, Bao W K, Li F L, Wu N. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany, 2008, 63(1–3): 248–255 (in Chinese)
https://doi.org/10.1016/j.envexpbot.2007.11.002
30 Wei H X, Xu C Y, Ma L Y, Jiang L N, Jiang C J, Liu F S, Zhang Q C. Nutrient uptake of Larix olgensis seedlings in response to different exponential regimes. Acta Ecologica Sinica, 2010, 30(3): 0685–0690 (in Chinese)
31 Zhang D, Chen Z X, Huang S N. Effects of fertilization on growth of Archidendron clypearia seedlings. Forest Research, 2015, 28(6): 906–909 (in Chinese)
32 Brown K R, Thompson W A, Camm E L, Guy R D, Hawkins B J. Effects of N addition rates on the productivity of Picea sitchensis, Thuja plicata, and Tsuga heterophylla seedlings. Trees, 1996, 10(3): 189–197
https://doi.org/10.1007/BF02340772
33 Nakaji T, Takenaga S, Kuroha M, Iuta T. Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environmental Sciences, 2002, 9(4): 269–282
34 Timmer V R. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New Forests, 1997, 13(1): 279–299
https://doi.org/10.1023/A:1006502830067
35 Salifu K F, Jacobs D F. Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Annals of Forest Science, 2006, 63(3): 231–237
https://doi.org/10.1051/forest:2006001
36 Cortina J, Vilagrosa A, Trubat R. The role of nutrients for improving seedling quality in drylands. New Forests, 2013, 44(5): 719–732
https://doi.org/10.1007/s11056-013-9379-3
37 Schott K M, Snively A E K, Landhäusser S M, Pinno B D. Nutrient loaded seedlings reduce the need for field fertilization and vegetation management on boreal forest reclamation sites. New Forests, 2016, 47(3): 1–18
https://doi.org/10.1007/s11056-015-9522-4
[1] Zhaogui YAN, Shengyu LIU, Junlian ZHANG, Guan HUANG, Lijun DUAN, Yaomei YE. Optimizing hairy root production from explants of Phyllanthus hainanensis, a shrub used for traditional herbal medicine[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 513-522.
[2] Uwe LUDEWIG, Lixing YUAN, Günter NEUMANN. Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels in the agronomic system[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 357-365.
[3] Meng DUAN, Jin XIE, Xiaomin MAO. Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic film mulching[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 144-161.
[4] Yuping ZHANG, Yanfei ZHOU, Xingxu ZHANG, Tingyu DUAN, Zhibiao NAN. Effects of Epichloë endophyte on antioxidant enzymes activities, photosynthesis and growth of three ecotypes of Elymus dahuricus[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 148-158.
[5] Huiqin HE, Thomas A. MONACO, Thomas A. JONES. Functional trait differences between native bunchgrasses and the invasive grass Bromus tectorum[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 139-147.
[6] Jingjing CHEN, Junyang FANG, Zhenfei GUO, Shaoyun LU. Polyamines and antioxidant defense system are associated with cold tolerance in centipedegrass[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 129-138.
[7] Yue LI, Liqiang WAN, Yufei WANG, Xianglin LI. Growth and abscisic acid responses of Medicago sativa to water stress at different growth stages[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 80-86.
[8] Nan WANG, Jing GAO, Suiqi ZHANG, Feng YAN. Comparison of prechilling stratification and sulfuric acid scarification on seed germination of Panicum virgatum under drought stress[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 220-227.
[9] Zhiqiang XIA,Xin CHEN,Cheng LU,Meiling ZOU,Shujuan WANG,Yang ZHANG,Kun PAN,Xincheng ZHOU,Haiyan WANG,Wenquan WANG. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta)[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 295-307.
[10] Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY. Modeling of hydrological processes in arid agricultural regions[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 283-294.
[11] Jianxiang XU,Dengke PAN,Jie ZHAO,Jianwu WANG,Xiaohong HE,Yuehui MA,Ning LI. Metabonomic study of the biochemical profiles of heterozygous myostatin knockout swine[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 90-99.
[12] Xue XU,Jiannan ZHANG,Juan LI,Yajun WANG. Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b) in chickens[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 73-83.
[13] Xianmin DIAO,James SCHNABLE,Jeffrey L. BENNETZEN,Jiayang LI. Initiation of Setaria as a model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed