Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front. Chem. China    2008, Vol. 3 Issue (4) : 467-470    https://doi.org/10.1007/s11458-008-0061-9
Controllable synthesis of -MnVO microtubes and hollow microspheres
LIU Yi1, QIAN Yitai2
1.Department of Chemistry, University of Science and Technology of China; 2.Department of Chemistry, Zaozhuang University;
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ?-Mn2V2O7 microtubes with a length of 15–25 ?m, 2.5–3.5 ?m external diameter, and ∼ 0.4 ?m wall thickness, as well as ?-Mn2V2O7 hollow microspheres with an average outer diameter of 2 ?m, were successfully synthesized in a suitable molar ratio of NH4VO3 and MnCO3 powders via a hydrothermal process. X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the products, and the magnetic susceptibility curve was also measured. In the whole process, the concentration of Mn2+ cations derived from MnCO3 dissolution plays a crucial role in the formation of ?-Mn2V2O7 microtubes and hollow microspheres.
Issue Date: 05 December 2008
 Cite this article:   
LIU Yi,QIAN Yitai. Controllable synthesis of -MnVO microtubes and hollow microspheres[J]. Front. Chem. China, 2008, 3(4): 467-470.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-008-0061-9
https://academic.hep.com.cn/fcc/EN/Y2008/V3/I4/467
1 Fey G T-K, Huang D L . Synthesis, characterizationand cell performance of inverse spinel electrode materials for lithiumsecondary batteries. Electrochimica Acta, 1999, 45: 295–314.
doi:10.1016/S0013-4686(99)00212-1
2 Prokofieva AV, Kremerb R K, Assmu W . Crystal growth and magnetic properties of α-CuV2O6. J Cryst Growth, 2001, 231: 498–505.
doi:10.1016/S0022-0248(01)01511-1
3 Baudrin E, Laruelle S, Denis S . et al.Synthesis and electrochemicalproperties of cobalt vanadates vs. lithium. Solid State Ionics, 1999, 123: 139–153.
doi:10.1016/S0167-2738(99)00096-X
4 Kim S S, Ikuta H, Wakihara M . Synthesis and characterization of MnV2O6 as a high capacity anode material for alithium secondary battery, Solid StateIonics, 2001, 139: 57–65.
doi:10.1016/S0167-2738(00)00816-X
5 Hara D, Ikuta H, Uchimoto Y et al.. Electrochemical propertiesof manganese vanadium molybdenum oxide as the anode for Li secondarybatteries. J Mater Chem, 2002, 12: 2507–2512.
doi:10.1039/b201966c
6 Inagaki M, Morishita T, Hirano M, et al.. Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodicperformance, Solid State Ionics, 2003, 156: 275–282.
doi:10.1016/S0167-2738(02)00679-3
7 Tian H J, Wachs I E, Briand L E . Comparison of UV and visible raman spectroscopy of bulkmetal molybdate and metal vanadate catalysts. J Phys Chem B, 2005, 109: 23491–23499.
doi:10.1021/jp053879j
8 Yahia H B, Gaudin E, Darriet J et al.. Synthesis, Crystalstructure, magnetic properties, and electronic structure of the newternary vanadate CuMnVO4. Inorg Chem, 2005, 44: 3087–3093.
doi:10.1021/ic048244y
9 Niederberger M, Muhr H J, Krumeich F, et al.. Low-cost synthesis of vanadium oxide nanotubesvia two novel non-alkoxide routes. ChemMater, 2000, 7: 1995–2000.
doi:10.1021/cm001028c
10 Kong L F, Shao M W, Xie Q, et al.. Hydrothermal growth of single-crystal CaV6O16·3H2O nanoribbons. J Cryst Growth, 2004, 260: 435–439.
doi:10.1016/j.jcrysgro.2003.08.045
11 Yu J G, Yu Jimmy C, Ho W K et al.. J Am Chem Soc, 2004, 126: 3422–3423.
doi:10.1021/ja031795n
12 Liu Y, Zhang Y G, Hu Y H et al.. Hydrothermal synthesisof single-crystal beta-AgVO3 nanowires andribbon-like nanowires. Chem Lett, 2005, 34: 146–147.
doi:10.1246/cl.2005.146
13 Zachariasen W H . The structure of thortveitite Sc2Si2O7. Z Kristallogr, 1930, 73: 1–6
14 Liao J H, Leroux F, Payen C et al.. Synthesis, structures,magnetic properties, and phase transition of manganese(II) divanadate:Mn2V2O7. J Solid State Chem, 1996, 121: 214–224.
doi:10.1006/jssc.1996.0030
15 Liu Z P, Li S, Yang Y et al.. Shape-controlledsynthesis and growth mechanism of one-dimensional nanostructures oftrigonal tellurium. New J Chem, 2003, 27: 1748–1752.
doi:10.1039/b306782c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed