Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (2) : 121-126    https://doi.org/10.1007/s11458-009-0026-7
RESEARCH ARTICLE
Photocatalytic hydrogen generation of Pt-Sr(Zr1-xYx)O3-δ-TiO2 heterojunction under the irradiation of simulated sunlight
Jianhui YAN1,2(), Qiang LIU1,2, Luxiong GUAN1, Feng LIANG2, Haojie GU1
1. Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, China; 2. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
 Download: PDF(178 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Pt-Sr(Zr1-xYx)O3-δ-TiO2 (Pt-SZYT) heterojunction photocatalysts were prepared by a photodeposition method. The composite particles were characterized by XRD, SEM, UV-Vis DRS, and PL techniques. Photocatalytic hydrogen generation in H2C2O4 aqueous solution under the irradiation of simulated sunlight was used as a probe reaction to evaluate the photocatalytic activity of the photocatalysts. The effects of the content of Pt loading and the concentration of oxalic acid on the photocatalytic activity of the catalyst were discussed. The continuous photocatalytic activity of the Pt-SZYT and the relationship between PL intensity and hydrogen generation were also discussed. The results show that Pt-SZYT catalysts had high photocatalytic activity of hydrogen generation. The content of Pt loading and the concentration of oxalic acid have important influence on the photocatalytic hydrogen generation. The optimal loading content of platinum was 0.90 mass%. Under this condition, the average rate of photocatalytic hydrogen generation was 1.68 mmol?h-1 when the concentration of oxalic acid was 50 mmol?L-1. The higher the photocatalytic activity, the weaker the PL intensity, which was demonstrated by the analysis of PL spectra.

Keywords heterojunction      photocatalysis      hydrogen generation      Pt      oxalic acid     
Corresponding Author(s): YAN Jianhui,Email:yanjh58@163.com   
Issue Date: 05 June 2009
 Cite this article:   
Jianhui YAN,Qiang LIU,Luxiong GUAN, et al. Photocatalytic hydrogen generation of Pt-Sr(Zr1-xYx)O3-δ-TiO2 heterojunction under the irradiation of simulated sunlight[J]. Front Chem Chin, 2009, 4(2): 121-126.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0026-7
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I2/121
Fig.1  SEM pattern of the as-obtained Pt-SZYT-70
Fig.2  XRD patterns of the as-obtained catalysts SZYT-70 and Pt-SZYT-70
Fig.3  Diffuse reflectance spectra of the as-obtained catalysts
Fig.4  PL spectra of different catalysts
Fig.5  Hydrogen generation at different react conditions
w(Pt)/(%)0.20.40.92.04.0
H2/mmol8.485.2210.105.167.82
Tab.1  Effect of Pt amount on photocatalytic H generation of photocatalysts
Fig.6  The relationship between photocatalytic H generation and PL intensity of the as-obtained photocatalysts
Fig.7  Initial rate of photocatalytic H generation as a function of (oxalic acid) Solution 600 mL, (0. 90%Pt-SZYT-70)=0. 60 g , =30 min
Fig.8  Continuous photocatalytic hydrogen generation of photocatalyst under visible light irradiation Solution 600 mL, (0. 90%Pt-SZYT-70)=0. 60 g, (oxalic acid)=8.0 mmol?L
1 Wilke K, Breuer H D. Influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobio A: Chem , 1999, 121(1): 49–53
doi: 10.1016/S1010-6030(98)00452-3
2 Jiang H Q, Wang P, Xian H Z. Preparation and photocatalytic activities of low amount Yb3+ doped TiO2 composite nano-powders. Acta Chim Sinica , 2006, 64(2): 145–150 (in Chinese)
3 Liu S X, Qu Z P, Han X W, Sun C L, Bao X H. Effect of silver deposition on photocatalytic activity of TiO2. Chinese J Catal , 2004, 25(2): 133–137 (in Chinese)
4 Liu Q, Guan L X, Yan J H, Xu L. Preparation and photocatalytic property of SrZr1-xYxO3-δ-TiO2 composite particles. J Inor Chem , 2007, 23(2): 347–352 (in Chinese)
5 Sakthivel S, Geeissen S U, Bahnemann D W, Murugesan V, Vogelpohl A. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J Photochem Photobio A: Chem , 2002, 148: 283–293
doi: 10.1016/S1010-6030(02)00055-2
6 Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photoch Photobio A , 2004, 163: 569–580
doi: 10.1016/j.jphotochem.2004.02.006
7 Omata T, Otsuka-Yao-Matsuo S. Photocatalytic behavior of titanium oxide-perovskite type SrZr1-xYxO3-δ composite particles. J Photochem Photobio A: Chem , 2003, 156: 243–248
doi: 10.1016/S1010-6030(02)00405-7
8 Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today , 2005, 101: 315–321
doi: 10.1016/j.cattod.2005.03.038
9 Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chem Phys Lett , 2002, 362: 441–444
doi: 10.1016/S0009-2614(02)01140-5
10 Mei C S, Zhong S H. Photocatalytic synthesis of MAA from propylene and carbon dioxide over Cu/WO3-TiO2 catalyst. Chem J Chinese Universities , 2005, 26: 1093–1097
11 Zhang W F, Zhang M S, Yin Z. Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B , 2000, 70, 261–265
doi: 10.1007/s003400050043
12 Li X Z, Li F B, Yang C L, Ge W K. Photocatalytic activity of WOx-TiO2 under visible light irradiation. J Photochem Photobiol A: Chem , 2001, 141: 209–217 .
doi: 10.1016/S1010-6030(01)00446-4
13 Jing L Q, Sun X J, Cai W M, Xu Z L, Du Y G, FuH G. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J Phys Chem Solid , 2003, 64: 615–623
doi: 10.1016/S0022-3697(02)00362-1
14 Liu L, Jiang X, Liang J H, Li Y D, Li F L. Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by severral methods. Spectro and Spectral Anal , 2005, 25: 1026–1029
15 Zhang L D, Mo C M. Luminescence in nanostructured materials. Nanostructured Mater , 1995, 6: 831–834
doi: 10.1016/0965-9773(95)00188-3
16 Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface: principles, mechanisms and selected results. Chem Rev , 1995, 95: 735–758
doi: 10.1021/cr00035a013
17 Fujihara K, Izumi S, Ohoo T. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J Photochem Photobiol A: Chem , 2000, 132: 99–104
doi: 10.1016/S1010-6030(00)00204-5
18 Hiramoto M, Hashimoto K, Sakata T. Electron transfer and photoluminescence dynamics of CdS particles deposited on porous vycor glass. Chem Phys Lett , 1987, 133: 440–444
doi: 10.1016/0009-2614(87)87098-7
19 Jing L Q, Sun X J, Cai W M, Li X Q, Fu H G, Hou H G, Fan N Y. Photoluminescence of Ce doped TiO2 Nanoparticles and their photocatalytic activity. Acta Chim Sinica , 2003, 61(8): 1241–1245 (in Chinese)
20 Jing L Q, Xu Z L, Sun X J, Shang J, Cai W M, Du Y G, Fu H G. Photocatalytic activity of ZnO and TiO2 particles and their deactivation and regeneration. Chinese J Catal , 2003, 24(3): 175–180 (in Chinese)
[1] Dadong YAN, Tongchuan SUO, Xinghua ZHANG, Xingkun MAN, Bing MIAO. Self-consistent field theory and its applications in polymer systems[J]. Front Chem Chin, 2011, 6(4): 310-331.
[2] Mingce LONG, Weimin CAI. Visible light responsive TiO2 modification with nonmetal elements[J]. Front Chem Chin, 2011, 6(3): 190-199.
[3] S. NITHIYANANTHAM, L. PALANIAPPAN, D. Raja. Ultrasonic study of adsorption in polysaccharide (starch) metabolism[J]. Front Chem Chin, 2011, 6(2): 147-152.
[4] Tianxiang ZHU, Xingguo CHEN, Jingui QIN. Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China[J]. Front Chem Chin, 2011, 6(1): 1-8.
[5] Xiaolin LU, Zhan CHEN, Gi XUE, Xinping WANG. Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique[J]. Front Chem Chin, 2010, 5(4): 435-444.
[6] Yuxiang BU, . Peptides-assisted charge transfers in proteins: relay mechanism and its controllability[J]. Front. Chem. China, 2010, 5(3): 309-324.
[7] Shiguo SUN, Lei SHI, Jiangli FAN, Xiaojun PENG, Fengyu LIU, . Photo-induced electron transfer study of rhenium(I) bipyridyl complexes with covalently linked phenothiazine donor through different bridge[J]. Front. Chem. China, 2010, 5(2): 171-177.
[8] Huanhuan LIU, Yi CHEN, Baoli YAO, . Two-photon absorption of photochromic diarylethene and its application to rewritable holographic recording[J]. Front. Chem. China, 2010, 5(2): 221-225.
[9] Rakesh KUMAR, Lina ZHANG, . Investigation into ramie whisker reinforced arylated soy protein composites[J]. Front. Chem. China, 2010, 5(1): 104-108.
[10] Jie LIU, Zhenyu GUO, Jin SUN, Wanzhen LIANG. Theoretical studies on electronic spectroscopy and dynamics with the real-time time-dependent density functional theory[J]. Front. Chem. China, 2010, 5(1): 11-28.
[11] Xueguang SHAO, Xia WU, Wensheng CAI, . Dynamic lattice searching methods for optimization of clusters[J]. Front. Chem. China, 2009, 4(4): 335-342.
[12] Lina YU, Dongfeng WANG, Weisheng HU, Haiyan LI, Minmin TANG. Study on the preparation and adsorption thermodynamics of chitosan microsphere resins[J]. Front Chem Chin, 2009, 4(2): 160-167.
[13] Min LI, Yuexiang LI, Shaoqin PENG, Gongxuan LU, Shuben LI. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2[J]. Front Chem Chin, 2009, 4(1): 39-43.
[14] Xiangfeng LI, Chusheng LI, Jiang LU, Hui LIANG. Designed synthesis and chiroptical properties of regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene) bearing (-)-trans-myrtanoxyl side groups[J]. Front Chem Chin, 2009, 4(1): 93-103.
[15] Qigui XU, Tianyu LIU, Rui TIAN, Qingeng LI, Deyin MA. Synthesis and antiemetic activity of 1,2,3,9-tetrahydro-9-methyl-3-(4-substituted-piperazin-1-ylmethyl)-4H-carbazol-4-one derivatives[J]. Front Chem Chin, 2009, 4(1): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed