Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front. Chem. China    2010, Vol. 5 Issue (1) : 33-44    https://doi.org/10.1007/s11458-009-0112-x
Research articles
Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells
Lei ZHAO1,Jun WANG1,Zhiqun LIN1, 2,
1.Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA; 2.2010-03-15 9:35:46;
 Download: PDF(385 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As one of the major renewable energy sources, solar energy has the potential to become an essential component of future global energy production. With the increasing demand in energy, the harvesting of solar energy using inexpensive materials and manufacturing methods has attracted considerable attention. Organic/inorganic (i.e., conjugated polymer/nanocrystal (CP/NC)) nanohybrid solar cell, including both physically mixed CP/NC composites and covalently linked CP-NC nanocomposites, is one of the several most promising alternative, cost-effective concepts for solar-to-electric energy conversion that has been offered to challenge conventional Si solar cells over the past decade. It has low fabrication cost and capability of large-scale production. However, to date, the highest power conversion efficiency (PCE) of organic/inorganic nanohybrid solar cells has been reported to be only 5.5%, which is still lower than the theoretical prediction of more than 10%. Several problems, i. e., microscopic phase separation of semiconducting CPs and NCs, low charge injection, and low carrier collection, have not been well addressed. More research remains to be done to improve the efficiency of CP/NC nanohybrid solar cells. In this review article, the recent advances in solving these problems were discussed. For the CP/NC solar cells prepared by physically mixing electron donating CP and electron accepting NC (i.e., forming CP/NC composites), methods involving the use of solvent mixtures and ligand modification to control the phase separation at the nanoscale are discussed; the implications of intriguing anisotropic NCs as well as their assemblies (i.e., NC arrays) on improving the charge collection are presented. For newly developed CP/NC solar cells prepared by chemically tethering CP chains on the NC surface (i.e., yielding CP-NC nanocomposites, thereby preventing microscopic phase separation of CP and NC and improving their electronic interaction), recent strategies on the synthesis of such nanocomposites and their photovoltaic performance are discussed.
Keywords conjugated polymers      nanocrystals      nanohybrid solar cells      
Issue Date: 05 March 2010
 Cite this article:   
Lei ZHAO,Jun WANG,Zhiqun LIN, et al. Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells[J]. Front. Chem. China, 2010, 5(1): 33-44.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0112-x
https://academic.hep.com.cn/fcc/EN/Y2010/V5/I1/33
Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O., Nature 2008, 454, 816–823
Saunders, B. R.; Turner, M. L., Adv. Colloid Interface Sci. 2008, 138, 1–23
Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Science 1999, 285, 692–698
Kamat, P. V., J. Phys. Chem. C 2008, 112, 18737–18753
Manna, L.; Scher, E. C.; Alivisatos, A. P., J. ClusterSci. 2002, 13, 521–532
Peng, X. G., Adv. Mater. 2003, 15, 459–463
Dong, H. X.; Yang, Z.; Yang, W. Y.; Yin, W. Y.; Song, Y. Z.; Yang, H. Q., Prog. Chem. 2006, 18, 1608–1614
Yu, H.; Li, J. B.; Loomis, R. A.; Gibbons, P. C.; Wang, L. W.; Buhro, W. E., J. Am. Chem. Soc. 2003, 125, 16168–16169
Wang, F. D.; Buhro, W. E., J. Am. Chem. Soc. 2007, 129, 14381–14387
Li, L. S.; Alivisatos, A. P., Adv. Mater. 2003, 15, 408
Ghezelbash, A.; Koo, B.; Korgel, B. A., Nano Lett. 2006, 6, 1832–1836
Hu, Z. H.; Fischbein, M. D.; Querner, C.; Drndic, M., Nano Lett. 2006, 6, 2585–2591
Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H. T.; Alivisatos, A. P., Nano Lett. 2006, 6, 1479–1482
Kang, C. C.; Lai, C. W.; Peng, H. C.; Shyue, J. J.; Chou, P. T., Acs Nano 2008, 2, 750–756
Querner, C.; Fischbein, M. D.; Heiney, P. A.; Drndic, M., Adv. Mater. 2008, 20, 2308
Coakley, K. M.; McGehee, M. D., Chemistry of Materials 2004, 16, 4533–4542
Jayadevan, K. P.; Tseng, T. Y., J. Nanosci. Nanotechnol. 2005, 5, 1768–1784
Ginger, D. S.; Greenham, N. C., Phys. Rev. B: Condens. Matter 1999, 59, 10622–10629
Campbell, I. H.; Hagler, T. W.; Smith, D. L.; Ferraris, J. P., Phys. Rev. Lett. 1996, 76, 1900–1903
Alvarado, S. F.; Seidler, P. F.; Lidzey, D. G.; Bradley, D. D. C., Phys. Rev. Lett. 1998, 81, 1082–1085
Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Science 2002, 295, 2425–2427
Manna, L.; Scher, E. C.; Alivisatos, A. P., J. Am.Chem. Soc. 2000, 122, 12700–12706
Murray, C. B.; Norris, D. J.; Bawendi, M. G., J. Am. Chem. Soc. 1993, 115, 8706–8715
Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M., J. Mater. Chem. 2002, 12, 748–753
Pradhan, N.; Xu, H. F.; Peng, X. G., Nano Lett. 2006, 6, 720–724
Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T., Angew.Chem. Int. Ed. 2002, 41, 4697–4700
Zhan, J. H.; Yang, X. G.; Wang, D. W.; Li, S. D.; Xie, Y.; Xia, Y.; Qian, Y. T., Adv. Mater. 2000, 12, 1348–1351
Duan, X. F.; Lieber, C. M., Adv. Mater. 2000, 12, 298–302
Gudiksen, M. S.; Lieber, C. M., J. Am. Chem. Soc. 2000, 122, 8801–8802
Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M., Nature2001, 409, 66–69
Fan, H. J.; Werner, P.; Zacharias, M., Small 2006, 2, 700–717
Peng, Z. A.; Peng, X. G., J. Am. Chem. Soc. 2001, 123, 183–184
Peng, Z. A.; Peng, X. G., J. Am. Chem. Soc. 2002, 124, 3343–3353
Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P., Science 2001, 292, 2060–2063
Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Nat. Mater. 2005, 4, 435–446
Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H., J. Phys. Chem. B 2002, 106, 7177–7185
Zhang, H.; Wang, D.; Mohwald, H., Angew. Chem. Int. Ed. 2006, 45, 6244–6244
Donega, C. D.; Liljeroth, P.; Vanmaekelbergh, D., Small 2005, 1, 1152–1162
Wang, Y.; Herron, N., J. Phys. Chem. 1991, 95, 525–532
Xu, J.; Wang, J.; Mitchell, M.; Mukherjee, P.; Jeffries-EL, M.; Petrich, J. W.; Lin, Z. Q., J. Am. Chem. Soc. 2007, 129, 12828–12833
Skaff, H.; Sill, K.; Emrick, T., J. Am. Chem. Soc. 2004, 126, 11322–11325
Schaller, R. D.; Agranovich, V. M.; Klimov, V. I., Nat. Phys. 2005, 1, 189–194
Schaller, R. D.; Klimov, V. I., Phys. Rev. Lett. 2004, 92
Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I., Nano Lett. 2006, 6, 424–429
Luque, A.; Marti, A.; Nozik, A. J., MRS Bull. 2007, 32, 236–241
Luther, J. M.; Beard, M. C.; Song, Q.; Law, M.; Ellingson, R. J.; Nozik, A. J., Nano Lett. 2007, 7, 1779–1784
Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Ellingson, R. J.; et al., J. Am. Chem. Soc. 2006, 128, 3241–3247
Beard, M. C.; Knutsen, K. P.; Yu, P. R.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J., Nano Lett. 2007, 7, 2506–2512
Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L., Nano Lett. 2005, 5, 865–871
Pijpers, J. J. H.; Hendry, E.; Milder, M. T. W.; Fanciulli, R.; Savolainen, J.; Herek, J. L.; Vanmaekelbergh, D.; Ruhman, S.; et al., J. Phys. Chem. C2007, 111, 4146–4152
Schaller, R. D.; Sykora, M.; Jeong, S.; Klimov, V. I., J. Phys. Chem. B 2006, 110, 25332–25338
Shabaev, A.; Efros, A. L.; Nozik, A. J., Nano Lett. 2006, 6, 2856–2863
Trinh, M. T.; Houtepen, A. J.; Schins, J. M.; Hanrath, T.; Piris, J.; Knulst, W.; Goossens, A. P. L. M.; Siebbeles, L. D.A., Nano Lett. 2008, 8, 1713–1718
Franceschetti, A.; Zhang, Y., Phys. Rev. Lett. 2008, 100
Guyot–Sionnest, P., Nat. Mater. 2005, 4, 653–654
Schaller, R. D.; Petruska, M. A.; Klimov, V. I., Appl. Phys. Lett. 2005, 87
Fu, A. H.; Gu, W. W.; Boussert, B.; Koski, K.; Gerion, D.; Manna, L.; Le Gros, M.; Larabell, C. A.; et al., Nano Lett. 2007, 7, 179–182
Kang, Y. M.; Park, N. G.; Kim, D., Appl. Phys. Lett. 2005, 86
Zhang, Q. L.; Gupta, S.; Emrick, T.; Russell, T. P., J. Am. Chem. Soc. 2006, 128, 3898–3899
Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P., Nano Lett. 2001, 1, 349–351
Agrawal, G. P.; Cojan, C.; Flytzanis, C., Phys. Rev. Lett. 1977, 38, 711–715
Nunzi, J. M., Comptes Rendus Physique 2002, 3, 523–542
Kim, Y. G.; Thompson, B. C.; Ananthakrishnan, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R., J. Mater. Res. 2005, 20, 3188–3198
Coakley, K. M.; Liu, Y. X.; McGehee, M. D.; Frindell, K. L.; Stucky, G. D., Adv. Funct. Mater. 2003, 13, 301–306
Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; et al., Nat. Mater. 2006, 5, 197–203
Wang, G. M.; Swensen, J.; Moses, D.; Heeger, A. J., J. Appl. Phys. 2003, 93, 6137–6141
Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C., Appl. Phys. Lett. 1998, 72, 519–521
Pschenitzka, F.; Sturm, J. C., Appl. Phys. Lett. 1999, 74, 1913–1915
Rogers, J. A.; Bao, Z. N.; Raju, V. R., Appl. Phys. Lett. 1998, 72, 2716–2718
Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Appl. Phys. Lett. 1996, 68, 3120–3122
Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J., Science 1995, 269, 1086–1088
Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.; Nakamura, Y.; Kanbara, T.; .et al, Macromolecules 1992, 25, 1214–1223
Gross, M.; Muller, D. C.; Nothofer, H. G.; Scherf, U.; Neher, D.; Brauchle, C.; Meerholz, K., Nature 2000, 405, 661–665
Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J. et al., Nature 1999, 401, 685–688
Zhang, R.; Li, B.; Iovu, M. C.; Jeffries-EL, M.; Sauve, G.; Cooper, J.; Jia, S. J.; Tristram-Nagle, S.; et al., J. Am. Chem. Soc. 2006, 128, 3480–3481
Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Frechet, J. M. J., Adv. Mater. 2003, 15, 1519
Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D., Adv. Funct. Mater. 2004, 14, 757–764
Kline, R. J.; Mcgehee, M. D.; Toney, M. F., Nat. Mater. 2006, 5, 222–228
Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Frechet, J. M. J.; Toney, M. F., Macromolecules 2005, 38, 3312–3319
Chang, J. F.; Sun, B. Q.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H., Chem. Mater. 2004, 16, 4772–4776
Bao, Z.; Lovinger, A. J.; Dodabalapur, A., Appl. Phys. Lett. 1996, 69, 3066–3068
Yang, C. M.; Wu, C. H.; Liao, H. H.; Lai, K. Y.; Cheng, H. P.; Horng, S. F.; Meng, H. F.; Shy, J. T., Appl. Phys.Lett. 2007, 90
Greenham, N. C.; Peng, X. G.; Alivisatos, A. P., Phys. Rev.B: Condens. Matter 1996, 54, 17628–17637
Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J., Adv. Mater. 2003, 15, 58
Milliron, D. J.; Gur, I.; Alivisatos, A. P., MRS Bull. 2005, 30, 41–44
Odoi, M. Y.; Hammer, N. I.; Sill, K.; Emrick, T.; Barnes, M. D., J. Am. Chem. Soc. 2006, 128, 3506–3507
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Nature 1994, 370, 354–357
Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V., Nature 2002, 420, 800–803
Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F., Adv. Mater. 2000, 12, 1102
Huynh, W. U.; Dittmer, J. J.; Libby, W. C.; Whiting, G. L.; Alivisatos, A. P., Adv. Funct. Mater. 2003, 13, 73–79

doi: 10.1002/adfm.200390009
Aldakov, D.; Chandezon, F.; De Bettignies, R.; Firon, M.; Reiss, P.; Pron, A., Eur. Phys. J. Appl. Phys. 2006, 36, 261–265

doi: 10.1051/epjap:2006144
Olson, J. D.; Gray, G. P.; Carter, S. A., Sol. Energy Mater. Sol.Cells 2009, 93, 519–523

doi: 10.1016/j.solmat.2008.11.022
Schierhorn, M.; Boettcher, S. W.; Ivanovskaya, A.; Norvell, E.; Sherman, J. B.; Stucky, G. D.; Moskovits, M., J. Phys. Chem. C 2008, 112, 8516–8520

doi: 10.1021/jp802624j
Huynh, W. U.; Peng, X. G.; Alivisatos, A. P., Adv. Mater. 1999, 11, 923

doi: 10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X. N.; Janssen, R. A. J., J. Phys. Chem. B 2005, 109, 9505–9516

doi: 10.1021/jp050745x
Sun, B. Q.; Marx, E.; Greenham, N. C., Nano Lett. 2003, 3, 961–963

doi: 10.1021/nl0342895
Gur, I.; Fromer, N. A.; Alivisatos, A. P., J. Phys.Chem. B 2006, 110, 25543–25546

doi: 10.1021/jp0652852
Kang, Y.; Kim, D., Sol. Energy Mater. Sol. Cells 2006, 90, 166–174

doi: 10.1016/j.solmat.2005.03.001
Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O'Brien, P.; Bradley, D. D. C.; Nelson, J.; Durrant, J. R., J. Mater. Chem. 2006, 16, 2088–2096

doi: 10.1039/b604355k
Bartholomew, G. P.; Heeger, A. J., Adv. Funct. Mater. 2005, 15, 677–682

doi: 10.1002/adfm.200400277
Lin, Z. Q., Chem. Eur. J. 2008, 14, 6294–6301

doi: 10.1002/chem.200800078
Querner, C.; Reiss, P.; Bleuse, J.; Pron, A., J. Am. Chem. Soc. 2004, 126, 11574–11582

doi: 10.1021/ja047882c
Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A., PCCP 2005, 7, 3204–3209
Zhang, Q. L.; Russell, T. P.; Emrick, T., Chem. Mater. 2007, 19, 3712–3716

doi: 10.1021/cm070603a
Querner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P., Chem. Mater. 2006, 18, 4817–4826

doi: 10.1021/cm061105p
Fang, C.; Qi, X. Y.; Fan, Q. L.; Wang, L. H.; Huang, W., Nanotechnology 2007, 18, 35704

doi: 10.1088/0957-4484/18/3/035704
Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J., J. Am. Chem. Soc. 2004, 126, 6550–6551

doi: 10.1021/ja0489184
Locklin, J.; Patton, D.; Deng, S. X.; Baba, A.; Millan, M.; Advincula, R. C., Chem. Mater. 2004, 16, 5187–5193

doi: 10.1021/cm048961q
Advincula, R. C., Dalton Trans. 2006, 2778–2784.

doi: 10.1039/b517601h
Kalyuzhny, G.; Murray, R. W., J. Phys. Chem. B 2005, 109, 7012–7021

doi: 10.1021/jp045352x
Komoto, A.; Maenosono, S.; Yamaguchi, Y., Langmuir 2004, 20, 8916–8923

doi: 10.1021/la0489211
Goodman, M. D.; Xu, J.; Wang, J.; Lin, Z. Q., Chem. Mater. 2009, 21, 934–938

doi: 10.1021/cm803248j
Tan, Z.; Hou, J. H.; He, Y. J.; Zhou, E. J.; Yang, C. H.; Li, Y. F., Macromolecules 2007, 40, 1868–1873

doi: 10.1021/ma070052+
Spanggaard, H.; Krebs, F. C., Sol. Energy Mater. Sol. Cells 2004, 83, 125–146

doi: 10.1016/j.solmat.2004.02.021
Possamai, G.; Maggini, M.; Menna, E.; Scorrano, G.; Franco, L.; Ruzzi, M.; Corvaja, C.; Ridolfi, G.; Samori, P.; Geri, A.; Camaioni, N., Appl. Phys. A 2004, 79, 51–58

doi: 10.1007/s00339-003-2502-0
Sun, X. B.; Zhou, Y. H.; Wu, W. C.; Liu, Y. Q.; Tian, W. J.; Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B., J. Phys. Chem. B 2006, 110, 7702–7707

doi: 10.1021/jp060128o
[1] Guanjiao CHEN, Wenjin ZHANG, Xinhua ZHONG, . Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals[J]. Front. Chem. China, 2010, 5(2): 214-220.
[2] SONG Xiaolan, HE Xi, YANG Haiping, XU Dayu, JIANG Nan, QIU Guanzhou. Kinetics of thermal decomposition of CeO nanocrystalline precursor prepared by precipitation method[J]. Front. Chem. China, 2008, 3(2): 182-185.
[3] LIU Yanshan, WANG Li, CAO Yong. Photovoltaic devices from CdSe nanocrystals and conjugated polymer composites[J]. Front. Chem. China, 2007, 2(4): 383-386.
[4] Yang Guizhong, Liu Tianxi, Wang Min. The photophysical properties and morphology of fluorene-alt-benzene based conjugated polymer[J]. Front. Chem. China, 2006, 1(2): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed