|
|
|
Theoretical study on self-assembly in organic
materials |
| Jianming CHEN1,Qikai LI1,Lingyi MENG1,Zhigang SHUAI2, |
| 1.Key Laboratory of Organic
Solids, Beijing National Laboratory for Molecular Science (BNLMS),
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China; 2.Key Laboratory of Organic
Solids, Beijing National Laboratory for Molecular Science (BNLMS),
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China;Department of Chemistry,
Tsinghua University, Beijing 100084, China; |
|
|
|
|
Abstract Theoretical work related to the self-assembly of organic materials was dealt with, and the various mechanisms leading to self-assembly, such as transition metal mediated self-assembly, constraint induced self-assembly, covalent bond based self-assembly and van der Waals interaction driven self-assembly, etc., were discussed. The formation of ordered structures could be attributed to the competition between short range attractive forces and long-range repulsion, which was arising from dipole interaction or may result from a different mechanism based on a purely repulsive isotropic short-range pair potential with two characteristic length scales. Such mechanism could be exploited in the study of self-assembly process. First principles SAPT(DFT) interaction energy calculations, combined with the Williams-Stone-Misquitta method, offer the ability to improve the molecular dynamics (MD) accuracy which could in turn be used in the prediction of crystal structures and self-assembly tendency. The combination of experimental and theoretical studies could open new breakthroughs over the design, synthesis, and characterization of self-assembled materials.
|
| Keywords
self-assembly
theoretical study
mechanism
structure prediction
|
|
Issue Date: 05 March 2010
|
|
|
Depero, L. E.; Lucia, C. M., Curr. Opin. Solid State Mater. Sci. 2004, 8, 103–109
doi: 10.1016/j.cossms.2004.01.006
|
|
Whitesides, G. M., Self assembly and nanotechnology, in Thefourth foresight conference on molecular nanotechnology; CA, USA, 1995
|
|
Klein, M. L.; Shinoda, W., Science2008, 321, 798--800
doi: 10.1126/science.1157834
|
|
Van Gunsteren, W. F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.; Glättli, A.; Hünenberger, P. H.; Kastenholz, M. A.; Ostenbrink, C.; Schenk, M.; Trzesniak, D.; Yu, H. B., Angew. Chem. 2006, 45, 4064--4092
doi: 10.1002/anie.200502655
|
|
Dong, K.; Zhou, G. H.; Liu, X. M.; Yao, X. Q.; Zhang, S. J.; Lyubartsev, A., J. Phys. Chem. C2009, 113, 10013--10020
doi: 10.1021/jp900533k
|
|
Meng, L.; Li, Q.; Shuai, Z., J. Chem. Phys. 2008, 128, 134703--7
doi: 10.1063/1.2883655
|
|
Meng, L.; Li, Q.; Shuai, Z., Sci. China Ser. B Chem. 2009, 52, 137--143
|
|
Ismail, A. E.; Grest, G. S.; Stevens, M. J., Langmuir2007, 23, 8508--8514
doi: 10.1021/la700829r
|
|
Lane, J. M. D.; Chandross, M.; Stevens, M. J.; Grest, G. S., Langmuir2008, 24, 5209--5212
doi: 10.1021/la704005v
|
|
Raut, V. P.; Agashe, M. A.; Stuart, S. J.; Latour, R. A., Langmuir2005, 21, 1629--1639
doi: 10.1021/la047807f
|
|
Mar, W.; Klein, M. L., Langmuir1994, 10, 188--196
doi: 10.1021/la00013a028
|
|
Dubbeldam, D.; Walton, K. S.; Ellis, D. E., Snurr, R. Q., Angew. Chem. Int. Ed. 2007, 46, 4496--4499
doi: 10.1002/anie.200700218
|
|
Han, S. S.; Mendoza--Cortés, J. L.; Goddard, W. A. III, Chem. Soc. Rev. 2009, 38, 1460--1476
doi: 10.1039/b802430h
|
|
Rosenbach, N. Jr; Jobic, H.; Ghoufi, A., Salles, F.; Maurin, G.; Bourrelly, S.; Llewellyn, P. L.; Devic, T.; Serre, C.; Férey, G., Angew. Chem. Int. Ed. 2008, 47, 6611--6615
doi: 10.1002/anie.200801748
|
|
Zhou, W.; Wu, H.; Yildirim, T.; Simpson, J. R.; Hight Walker, A.R., Phys. Rev. B2008, 78, 054114--5
|
|
Gardebien, F.; Gaudel--Siri, A.; Bredas, J. L.Lazzaroni, R., J. Phys. Chem. B2004, 108, 10678--10686
doi: 10.1021/jp0493069
|
|
Gesquiere, A.; Abdel--Mottaleb, M. M. S.; De Feyter, S., De Schryver, F. C.; Schoonbeek, F.; van Esch, J.; Kellogg, R. M.; Feringa, B. L.; et al, Langmuir, 2000, 16, 10385--10391
doi: 10.1021/la001286o
|
|
He, H.; Galy, J.; Gerard, J. F., J. Phys. Chem. B2005, 109, 13301--13306
doi: 10.1021/jp0517495
|
|
Heinz, H.; Castelijns, H. J.; Suter, U. W., J. Am. Chem. Soc. 2003, 125, 9500--9510
doi: 10.1021/ja021248m
|
|
Beznosyuk, S. A.; Lerh, Y. V.; Zhukovsky, T. M.; Zhukovsky, M. S., Mater. Sci. Eng. C2009, 29, 884--888
doi: 10.1016/j.msec.2008.07.037
|
|
Striolo, A., Nanotech. 2008, 19, 445606
doi: 10.1088/0957-4484/19/44/445606
|
|
Leininger, S.; Olenyuk, B.; Stang, P. J., Chem. Rev. 2000, 100, 853--908
doi: 10.1021/cr9601324
|
|
Müller, I. M.; Robson, R.; Separovic, F., Angew. Chem. Int. Ed. 2001, 40, 4385--4386
doi: 10.1002/1521-3773(20011203)40:23<4385::AID-ANIE4385>3.0.CO;2-T
|
|
Jeong, K. S.; Kim, S. Y.; Shin, U. S.; Kogej, M.; Hai, N. T.; Broekmann, P.; Jeong, N.; Kirchner, B.; et al, J. Am. Chem. Soc. 2005, 127, 17672--17685
doi: 10.1021/ja053781i
|
|
Chen, C. L.; Kang, B. S.; Su, C. Y., Aust. J. Chem. 2006, 59, 3--18
doi: 10.1071/CH05225
|
|
Suárez, M.; Branda, N.; Lehn, J. M.; Decian, A.; Fischer, J., Helv. Chim. Acta1998, 81, 1--13
doi: 10.1002/hlca.19980810102
|
|
He, X. R.; Li, Q. K.; Li, Y. L.; Wang, N.; Song, Y. B.; Liu, X. F.; Yuan, M. J.; Xu, W.; et al, J. Phys. Chem.B2007, 111, 8063--8068
doi: 10.1021/jp071706j
|
|
Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Withersby, M. A.; Schroder, M., Coord. Chem. Rev. 1999, 183, 117--138
doi: 10.1016/S0010-8545(98)00173-8
|
|
Sun, S. S.; Lees, A. J., Coord. Chem. Rev. 2002, 230, 170--191
doi: 10.1016/S0010-8545(02)00043-7
|
|
Lobban, C.; Finney, J. L.; Kuhs, W. F., J. Chem. Phys. 2000, 112, 7169--7180
doi: 10.1063/1.481282
|
|
Salzmann, C. G.; Radaelli, P. G.; Hallbrucker, A.; Mayer, E.; Finney, J. L., Science2006, 311, 1758--1761
doi: 10.1126/science.1123896
|
|
Chen, J. M.; Meng, L. Y.; Li, Q. K.; Shuai, Z. G., Molecular dynamic simulation on self--assemblingsystem formed by α--phhthalocyanine and p--sexiphenyl, in The 8th InternationalConference on Optical Probes of Conjugated Polymers and Organic Nanostructures; Beijing, China, 2009; p 84
|
|
Yang, J.; Wang, T.; Wang, H.; Zhu, F.; Li, G.; Yan, D., J. Phys. Chem. B, 2008, 112, 3132--3137
doi: 10.1021/jp711161f
|
|
Ulman, A., Chem. Rev. 1996, 96, 1533--1554
doi: 10.1021/cr9502357
|
|
Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Chem. Rev. 2005, 105, 1103--1170
doi: 10.1021/cr0300789
|
|
Rai, B.; Sathish, P.; Malhotra, C. P.; Pradip; Ayappa, K. G., Langmuir2004, 20, 3138--3144
doi: 10.1021/la0357256
|
|
Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Chem. Mater. 1994, 6, 1017--1022
doi: 10.1021/cm00043a025
|
|
Stevens, M. J.; Grest, G. S., Biointerphases, 2008, 3, FC13--FC22
doi: 10.1116/1.2977751
|
|
Jensen, M. O.; Mouritsen, O. G.; Peters, G. H., J. Chem. Phys. 2004, 120, 9729--9744
doi: 10.1063/1.1697379
|
|
Zheng, J.; Li, L.; Chen, S.; Jiang, S., Langmuir2004, 20, 8931--8938
doi: 10.1021/la036345n
|
|
Zheng, J.; Li, L.; Tsao H. K.; Sheng, Y. J.; Chen, S.; Jiang, S., Biophys. J. 2005, 89, 158--166
doi: 10.1529/biophysj.105.059428
|
|
Srivastava, P.; Chapman, W. G.; Laibinis, P. E., Langmuir2009, 25, 2689--2695
doi: 10.1021/la803423a
|
|
Shevade, A.V.; Zhou, J.; Zin, M. T.; Jiang, S., Langmuir2001, 17, 7566--7572
doi: 10.1021/la0108151
|
|
Heinz, H.; Vaia, R. A.; Krishnamoorti, R.; Farmer, B. L., Chem. Mater. 2007, 19, 59--68
doi: 10.1021/cm062019s
|
|
Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H., J. Chem. Phys. 2007, 126, 104703--10
doi: 10.1063/1.2464091
|
|
Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.; Dimeo, R. M.; Neumann, D. A.; Copley, J. R. D., J. Chem. Phys. 2007, 126, 104704--17
doi: 10.1063/1.2464092
|
|
Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Standish, R. K., Chem. Mater. 2003, 15, 4732--4738
doi: 10.1021/cm0342952
|
|
Gus'kova, O. A.; Mena--Osteritz, E.; Schillinger, E.; Khalatur, P. G.; Bäuerle, P.; Khokhlov, A. R.,J. Phys. Chem. C2007, 111, 7165--7174
doi: 10.1021/jp0704618
|
|
Aoki, K., J. Electroanal. Chem. 2001, 513, 1--7
doi: 10.1016/S0022-0728(01)00604-0
|
|
Malescio, G.; Pellicane, G., Nat. Mater. 2003, 2, 97--100
doi: 10.1038/nmat820
|
|
Rowlinson, J. S.; Widom, B., MolecularTheory of Capillarity; OxfordUniversity Press: Oxford, 1989; p 50–68
|
|
Wannier, G. H., Statistical Physics; Dover Publications, 1987
|
|
Dunitz, J. D., Chem. Comm. 2003, 545--548
|
|
Dunitz, J. D.; Scheraga, H. A., Proc. Nat. Acad. Sci. U. S. A. 2004, 101, 14309--14311
doi: 10.1073/pnas.0405744101
|
|
Heßelmann, A.; Jansen, G., Chem. Phys. Lett. 2002, 362, 319--325
|
|
Heßelmann, A.; Jansen, G.; Schutz, M., J. Chem. Phys. 2005, 122, 014103--17
|
|
Misquitta, A. J.; Jeziorski, B.; Szalewicz, K., Phys. Rev. Lett. 2003, 91, 033201
doi: 10.1103/PhysRevLett.91.033201
|
|
Misquitta, A. J.; Szalewicz, K., Chem. Phys. Lett. 2002, 357, 301--306
doi: 10.1016/S0009-2614(02)00533-X
|
|
Misquitta, A. J.; Szalewicz, K., J. Chem. Phys. 2005, 122, 214109--19
doi: 10.1063/1.1924593
|
|
Misquitta, A. J.; Podeszwa, R.; Jeziorski, B.; Szalewicz, K., J. Chem. Phys. 2005, 123, 214103--14
doi: 10.1063/1.2135288
|
|
Misquitta, A. J.; Welch, G.W. A.; Stone, A.J.; Price, S. L., Chem. Phys. Lett. 2008, 456, 105--109
doi: 10.1016/j.cplett.2008.02.113
|
|
Choi, I. S.; Bowden, N.; Whitesides, G. M., Angew.Chem. Int. Ed. 1999, 38, 3078--3081
doi: 10.1002/(SICI)1521-3773(19991018)38:20<3078::AID-ANIE3078>3.0.CO;2-3
|
|
Drain, C. M., Proc. Nat. Aca. Sci. U. S. A. 2002, 99, 5178--5182
doi: 10.1073/pnas.062635099
|
|
Hecht, S., Angew. Chem. Int. Ed., 2003, 42, 24--26
doi: 10.1002/anie.200390045
|
|
Lehn, J. M., Supramolecular Chemistry; Wiley--VCH: Weinheim, 1995
doi: 10.1002/3527607439
|
|
Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M., J. Mater. Chem. 2003, 13, 2661-2670
doi: 10.1039/b304972h
|
|
Lehn, J. M., Science2002, 295, 2400-2403
doi: 10.1126/science.1071063
|
|
Cava, R. J.; DiSalvo, F. J.; Brus, L. E.; Dunbar, K. R.; Gorman, C. B.; Haile, S. M.; Interrante, L. V.; Musfelt, J. L.,et al, Prog. Solid State Chem. 2002, 30, 1–101
doi: 10.1016/S0079-6786(02)00010-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|