Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front. Chem. China    2010, Vol. 5 Issue (2) : 134-149    https://doi.org/10.1007/s11458-010-0116-6
Research articles
Chromophore-functionalized dendrimers for sensing applications
Jing YAN,Jian PEI,
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering and Polymer Chemistry, College of Chemistry, Peking University, Beijing 100871, China;
 Download: PDF(1220 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chromophore-functionalized dendrimer sensors represent a new class of highly sensitive sensing materials. Here we review various strategies regarding dendrimer sensors, with specific attention being paid to how to achieve signal amplification using dendrimers’ unique geometric features.
Keywords dendrimer      sensor      conjugated structures      energy transfer      organic electronics      
Issue Date: 05 June 2010
 Cite this article:   
Jing YAN,Jian PEI. Chromophore-functionalized dendrimers for sensing applications[J]. Front. Chem. China, 2010, 5(2): 134-149.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-010-0116-6
https://academic.hep.com.cn/fcc/EN/Y2010/V5/I2/134
Newkome, G. R.; Moorefield, C. N.; Vögtle, F., Dendritic Molecules: Concepts, Syntheses, Perspectives; VCH: Weinheim, 1996
Tomalia, D. A.; Fréchet, J. M. J., Dendrimers and Other Dendritic Polymers; J. Wiley & Sons Ltd., Chichester, 2001, p 1–44
Helms, B.; Meijer, E. W., Science 2006, 313, 929–930

doi: 10.1126/science.1130639
Lee, C. C.; MacKay, J. A.; Fréchet, J. M. J.; Szoka, F. C., Nat. Biotechnol. 2005, 23, 1517–1526

doi: 10.1038/nbt1171
Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.; Martín, S.; Roeck, J.; Ryder, J.; et al, Polym. J. 1985, 17, 117–132

doi: 10.1295/polymj.17.117
Grayson, S. M.; Fréchet, J. M. J., Chem. Rev. 2001, 101, 3819–3868

doi: 10.1021/cr990116h
Newkome, G. R.; Yao, Z. Q.; Baker, G. R.; Gupta, K., J. Org. Chem. 1985, 50, 2003–2004

doi: 10.1021/jo00211a052
Watson, M. D.; Fechtenkötter, A.; Müllen, K., Chem. Rev. 2001, 101, 1267–1300

doi: 10.1021/cr990322p
Lo, S. C.; Burn, P. L., Chem. Rev. 2007, 107, 1097–1116

doi: 10.1021/cr050136l
Burn, P. L.; Lo, S. C.; Samuel, I. D. W., Adv. Mater. 2007, 19, 3000–3003

doi: 10.1002/adma.200601592
Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vögtle, F., Chem. Commun. 2000, 853–854

doi: 10.1039/b002116o
Gaylord, B. S.; Heeger, A. J.; Bazan, G. C., J. Am. Chem. Soc. 2003, 125, 896–900

doi: 10.1021/ja027152+
Wang, S.; Liu, B.; Gaylord, B. S.; Bazan, G. C., Adv. Funct. Mater. 2003, 13, 463–467

doi: 10.1002/adfm.200304339
Wang, S.; Gaylord, B. S.; Bazan, G. C., Adv. Mater. 2004, 16, 2127–2132

doi: 10.1002/adma.200401036
Narayanan, A.; Varnavski, O.; Mongin, O.; Majoral, J. P.; Blanchard-Desce, M.; Goodson, T. III, Nanotechnology 2008, 19, 115502–115507

doi: 10.1088/0957-4484/19/11/115502
Mongin, O.; Krishna, T. R.; Werts, M. H. V.; Caminade, A. M.; Majoral, J. P.; Blanchard-Desce, M., Chem. Commun. 2006, 915–917

doi: 10.1039/b517270e
Astruc, D.; Ornelas, C.; Ruiz, J., Acc. Chem. Res. 2008, 41, 841–856

doi: 10.1021/ar8000074
Zana, R.; Kahler, E. W., Giant micelles: properties and applications, CRC Press, Boca Raton, 2007
Briñas, R. P.; Troxler, T.; Hochstrasser, R. M.; Vinogradov, S. A., J. Am. Chem. Soc. 2005, 127, 11851–11862

doi: 10.1021/ja052947c
Smith, D. K.; Diederich, F., Chem. Commun. 1998, 2501–2502

doi: 10.1039/a806596i
Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E., J. Am. Chem. Soc. 1992, 114, 1018–1025

doi: 10.1021/ja00029a034
Ma, C. Q.; Fonrodona, M.; Schikora, M. C.; Wienk, M. M.; Janssen, R. A. J.; Bäuerle, P., Adv. Funct. Mater. 2008, 18, 3323–3331

doi: 10.1002/adfm.200800584
Takanashi, K.; Chiba, H.; Higuchi, M.; Yamamoto, K., Org. Lett. 2004, 6, 1709–1712

doi: 10.1021/ol049656d
Ma, C. Q.; Mena-Osteritz, E.; Debaerdemaeker, T.; Wienk, M. M.; Janssen, R. A. J.; Bäuerle, P., Angew. Chem. Int. Ed. 2007, 46, 1679–1683

doi: 10.1002/anie.200602653
Berresheim, A. J.; Müller, M.; Müllen, K., Chem. Rev. 1999, 99, 1747–1786

doi: 10.1021/cr970073+
Clark, C. G. Jr; Wenzel, R. J.; Andreitchenko, E. V.; Steffen, W.; Zenobi, R.; Müllen, K., J. Am. Chem. Soc. 2007, 129, 3292–3301

doi: 10.1021/ja067662u
Xu, Z.; Moore, J. S., Angew. Chem. Int. Ed. Engl. 1993, 32, 246–248

doi: 10.1002/anie.199302461
Devadoss, C.; Bharathi, P.; Moore, J. S., J. Am. Chem. Soc. 1996, 118, 9635–9644

doi: 10.1021/ja961418t
Kühlbrandt, W.; Wang, D. N.; Fujiyoshi, Y., Nature 1994, 367, 614–621

doi: 10.1038/367614a0
Cao, X. Y.; Zhang, W. B.; Wang, J. L.; Zhou, X. H.; Lu, H.; Pei, J., J. Am. Chem. Soc. 2003, 125, 12430–12431

doi: 10.1021/ja037723d
Pei, J.; Wang, J. L.; Cao, X. Y.; Zhou, X. H.; Zhang, W. B., J. Am. Chem. Soc. 2003, 125, 9944–9945

doi: 10.1021/ja0361650
Sun, Y.; Xiao, K.; Liu, Y.; Wang, J.; Pei, J.; Yu, G.; Zhu, D., Adv. Funct. Mater. 2005, 15, 818–822

doi: 10.1002/adfm.200400380
Wang, J. Y.; Han, J. M.; Yan, J.; Ma, Y.; Pei, J., Ch. Ew.J. 2009, 15, 3585–3594

doi: 10.1002/chem.200802228
Jiang, Y.; Lu, Y. X.; Cui, Y. X.; Zhou, Q. F.; Ma, Y.; Pei, J., Org. Lett. 2007, 9, 4539–4542

doi: 10.1021/ol702063e
Jiang, Y.; Wang, L.; Zhou, Y.; Cui, Y. X.; Wang, J.; Cao, Y.; Pei, J., Chem. Asian J. 2009, 4, 548–553

doi: 10.1002/asia.200800329
Wang, J. L.; Yan, J.; Tang, Z. M.; Xiao, Q.; Ma, Y.; Pei, J., J. Am. Chem. Soc. 2008, 130, 9952–9962

doi: 10.1021/ja803109r
Pu, L., Chem. Rev. 2004, 104, 1687–1716

doi: 10.1021/cr030052h
Ma, C. Q.; Mena-Osteritz, E.; Debaerdemaeker, T.; Wienk, M. M.; Janssen, R. A. J.; Bäuerle, P., Angew. Chem. Int. Ed. 2007, 46, 1679–1683

doi: 10.1002/anie.200602653
Gong, L. Z.; Hu, Q. S.; Pu, L., J. Org. Chem. 2001, 66, 2358–2367

doi: 10.1021/jo001565g
Xu, M. H.; Lin, J.; Hu, Q. S.; Pu, L., J. Am. Chem. Soc. 2002, 124, 14239–14246

doi: 10.1021/ja020989k
Schlupp, M.; Weil, T.; Berrescheim, A. J.; Wiesler, U. M.; Bargon, J.; Müllen, K., Angew. Chem. Int. Ed. 2001, 40, 4011–4015

doi: 10.1002/1521-3773(20011105)40:21<4011::AID-ANIE4011>3.0.CO;2-C
Janshoff, A.; Galla, H.J.; Steinem, C., Angew. Chem. Int. Ed. 2000, 39, 4004–4032

doi: 10.1002/1521-3773(20001117)39:22<4004::AID-ANIE4004>3.0.CO;2-2
Meijer, E. W.; Van Genderen, M. H., Nature 2003, 426, 128–129

doi: 10.1038/426128a
de Groot, F. M. H.; Albrecht, C.; Koekkoek, R.; Beusker, P. H.; Scheeren, H. W., Angew. Chem. Int. Ed. 2003, 42, 4490–4494

doi: 10.1002/anie.200351942
Szalai, M. L.; Kevwitch, R. M.; McGrath, D. V., J. Am. Chem. Soc. 2003, 125, 15688–15689

doi: 10.1021/ja0386694
Amir, R. J.; Pessah, N.; Shamis, M.; Shabat, D., Angew. Chem. Int. Ed. 2003, 42, 4494–4499

doi: 10.1002/anie.200351962
Sella, E.; Shabat, D., Chem. Commun. 2008, 5701–5703

doi: 10.1039/b814855d
Thompson, B. C.; Fréchet, J. M. J., Angew. Chem. Int. Ed. 2008, 47, 58–77

doi: 10.1002/anie.200702506
Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K., Nature 2009, 459, 234–238

doi: 10.1038/nature08003
Forrest, S. R., Nature 2004, 428, 911–918

doi: 10.1038/nature02498
Zhao, Y. S.; Fu, H.; Peng, A.; Ma, Y.; Xiao, D.; Yao, J., Adv. Mater. 2008, 20, 2859–2876

doi: 10.1002/adma.200800604
Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Fréchet, J. M. J., J. Am. Chem. Soc. 2000, 122, 12385–12386

doi: 10.1021/ja001356d
[1] Xiaoqi FU, Shuang WANG, Qian ZHAO, Tingshun JIANG, Hengbo YIN. Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection[J]. Front Chem Chin, 2011, 6(3): 206-212.
[2] Mingzhu LI, Yanlin SONG, . High effective sensors based on photonic crystals[J]. Front. Chem. China, 2010, 5(2): 115-122.
[3] Shaomin JI, Wanhua WU, Wenting WU, Qi YANG, Quan WANG, Xin ZHANG, Yubo WU, Jianzhang ZHAO, Huimin GUO, . Synthesis of polypyridyl ruthenium complexes with 2-(1-aryl)-1H-imidazo[4,5-f]-1,10-phenanthroline ligand and its application for luminescent oxygen sensing[J]. Front. Chem. China, 2010, 5(2): 193-199.
[4] Qingxian LIAO, Aifang LI, Zhao LI, Yibin RUAN, Yunbao JIANG, . A novel intramolecular charge transfer fluorescent chemosensor highly selective for Cu 2+ in neutral aqueous solutions[J]. Front. Chem. China, 2010, 5(2): 178-183.
[5] Quanguo WANG, Yubin DING, Weihong ZHU, Yongshu XIE, . A novel fluorescence enhancing F - probe based on intermolecular energy transfer[J]. Front. Chem. China, 2010, 5(2): 162-165.
[6] Yi QU, Yihua JIANG, Jianli HUA, . Hyperbranched polyyne containing naphthalimide moiety as a fluorescent chemosensor for mercury ion[J]. Front. Chem. China, 2010, 5(2): 226-233.
[7] Yanyan WANG, Bin LIU, . Conjugated polyelectrolyte amplified fluorescent assays with probe functionalized silica nanoparticles for chemical and biological sensing[J]. Front. Chem. China, 2009, 4(4): 325-334.
[8] HE Gu, GUO Li, WANG Qianqian, MA Lifang, HE Zechao. Studies on synthesis and molecular dynamics simulation of dendrimers containing amino acids and peptides[J]. Front. Chem. China, 2007, 2(4): 378-382.
[9] ZHANG Xiaofeng, LIN Shen, CHEN Xinqing, CHEN Jiebo, YANG Liuyi, LUO Minghong. Preparation of mesoporous aluminophosphate using poly(amido amine) as template[J]. Front. Chem. China, 2007, 2(4): 419-421.
[10] MA Jie, WU Hai, ZHU Yaqi. Electrochemical behavior of hydrogen peroxide sensor based on new methylene blue as mediator[J]. Front. Chem. China, 2007, 2(3): 326-330.
[11] SONG Zhao, ZHAO Zixia, QIN Xia, HUANG Jiadong, SHI Haibin, WU Baoyan, CHEN Qiang. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization[J]. Front. Chem. China, 2007, 2(2): 146-150.
[12] WANG Yunyan, CAI Yahua, YAN Chaoguo. Syntheses and metal ions recognition of dendritic calix[n]arenes (n = 6,8) amide derivative[J]. Front. Chem. China, 2007, 2(1): 45-49.
[13] Siqingaowa, Zhaorigetu, Yao Hongxia, Garidi. Preparation and characterization of carbosilane dendrimer-bonded silica gel and its use in LC[J]. Front. Chem. China, 2006, 1(3): 324-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed