Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (1) : 15-20    https://doi.org/10.1007/s11458-011-0221-1
RESEARCH ARTICLE
Selective detection of phosphaphenanthrene-containing luminophors with aggregation-induced emission enhancement to transition metal ions
Lijun QIAN1,2, Bin TONG1, Shu SUN1, Jianbing SHI1(), Junge ZHI3, Yuping DONG1()
1. College of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.; 2. Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China; 3. College of Science, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10-6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced J-aggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.

Keywords AIEE      phosphaphenanthrene      transition metal ions      quenching effect     
Corresponding Author(s): SHI Jianbing,Email:bing@bit.edu.cn; DONG Yuping,Email:chdongyp@bit.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Lijun QIAN,Bin TONG,Shu SUN, et al. Selective detection of phosphaphenanthrene-containing luminophors with aggregation-induced emission enhancement to transition metal ions[J]. Front Chem Chin, 2011, 6(1): 15-20.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0221-1
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I1/15
Fig.1  PL spectra of in water-AN mixture (80∶20 by volume) solution in the presence of different transition metal ions in water. Excitation wavelength: 275 nm. Concentration of metal ions was 1 × 10 mol/L.
Fig.2  Relative quenching efficiency of ten transitional metal ions on emission of aggregated in water-AN mixture (80∶20 by volume) solution.
Fig.3  PL spectra of in the presence of (a) Fe and (b) Hg in water-AN mixture (80∶20 by volume) (the concentrations of metal ions (mol/L): 0, 1×10, 1×10, 1×10, 1×10). Excitation wavelength: 275 nm.
Fig.4  Relation between quenching efficiency of Fe, Hg, Cu on emission and concentration of metal ions in water-AN mixture (80∶20 by volume).
Fig.5  UV absorbance curves of in water-AN mixture (80∶20 by volume) in the presence of transition metal ions. Transition metal ions concentration: 1 × 10 mol/L.
Fig.6  SEM photos of aggregates in water-AN mixture (80∶20 by volume) in the presence of 1 × 10 mol/L metal ions. The sequence of metal ions are (a) no, (b) Cu, (c) Hg and (d) Fe.
Fig.7  The surface element analysis of aggregated particles in the presence of Hg by EDS.
1 de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Chem. Rev. 1997, 97, 1515–1566
doi: 10.1021/cr960386p pmid:11851458
2 Liu, J.; Lu, Y., J. Am. Chem. Soc. 2003, 125, 6642–6643
doi: 10.1021/ja034775u pmid:12769568
3 Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T., J. Am. Chem. Soc. 2007, 129, 1500–1501
doi: 10.1021/ja0643319 pmid:17283986
4 Royzen, M.; Dai, Z.; Canary, J. W., J. Am. Chem. Soc. 2005, 127, 1612–1613
doi: 10.1021/ja0431051 pmid:15700975
5 Mandal, A. K.; Suresh, M.; Suresh, E.; Mishra, S. K.; Mishra, S.; Das, A., Sens. Actuators B Chem. 2010, 145, 32–38
doi: 10.1016/j.snb.2009.11.016
6 Kim, I. B.; Erdogan, B.; Wilson, J. N.; Bunz, U. H. F., Chemistry 2004, 10, 6247–6254
doi: 10.1002/chem.200400788 pmid:15526311
7 Ono, A.; Togashi, H., Angew. Chem. Int. Ed. 2004, 43, 4300–4302
doi: 10.1002/anie.200454172
8 Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K., J. Org. Chem. 2005, 70, 2394–2397
doi: 10.1021/jo0482054 pmid:15760241
9 Descalzo, A.; Martò′nez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J., J. Am. Chem. Soc. 2003, 125, 3418–3419
doi: 10.1021/ja0290779 pmid:12643689
10 Guo, X. F.; Qian, X. H.; Jia, L. H., J. Am. Chem. Soc. 2004, 126, 2272–2273
doi: 10.1021/ja037604y pmid:14982408
11 Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y. B., Org. Lett. 2005, 7, 4217–4220
doi: 10.1021/ol051614h pmid:16146391
12 Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., Angew. Chem. Int. Ed. 2007, 46, 6658–6661
doi: 10.1002/anie.200701785
13 Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K., J. Am. Chem. Soc. 2005, 127, 13522–13529
doi: 10.1021/ja050652t pmid:16190715
14 Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Chem. Commun. 2001, 1740–1741
doi: 10.1039/b105159h pmid:12240292
15 Bhongale, C. J.; Hsu, C. S., Angew. Chem. Int. Ed. 2006, 45, 1404–1408
doi: 10.1002/anie.200503067
16 Chung, J. W.; An, B. K.; Park, S. Y., Chem. Mater. 2008, 20, 6750–6755
doi: 10.1021/cm8019186
17 An, B. K.; Lee, D. S.; Lee, J. S.; Park, Y. S.; Song, H. S.; Park, S. Y., J. Am. Chem. Soc. 2004, 126, 10232–10233
doi: 10.1021/ja046215g pmid:15315421
18 Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z., J. Phys. Chem. B 2008, 112, 9281–9288
doi: 10.1021/jp800296t pmid:18630853
19 Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C., Org. Lett. 2008, 10, 281–284
doi: 10.1021/ol702666g pmid:18092792
20 Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun. 2009, 4332–4353
doi: 10.1039/b904665h pmid:19597589
21 Liu, Y.; Tao, X.; Wang, F.; Dang, X.; Zou, D.; Ren, Y.; Jiang, M., J. Phys. Chem. C 2008, 112, 3975–3981
doi: 10.1021/jp7117373
22 Wu, Y. T.; Kuo, M. Y.; Chang, Y. T.; Shin, C. C.; Wu, T. C.; Tai, C. C.; Cheng, T. H.; Liu, W. S., Angew. Chem. Int. Ed. 2008, 47, 1–5
doi: 10.1002/anie.200790254
23 Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin, A.; Hong, Y.; Ji, L.; Zhu, Z.; Jim, C. K.; Yu, G.; Li, Q.; Li, Z.; Liu, Y.; Qin, J.; Tang, B. Z., Chem. Commun. 2007, 70–72
doi: 10.1039/b613522f pmid:17279264
24 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z., Chem. Commun. 2007, 3255–3257
doi: 10.1039/b704794k pmid:17668092
25 Tong, H.; Hong, Y.; Dong, Y.; H?ussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., J. Phys. Chem. B 2007, 111, 11817–11823
doi: 10.1021/jp073147m pmid:17877385
26 Tong, H.; Hong, Y.; Dong, Y.; H?ussler, M.; Lam, J. W. Y.; Li, Z.; Guo, Z.; Guo, Z.; Tang, B. Z., Chem. Commun. 2006, 3705–3707
doi: 10.1039/b608425g pmid:17047818
27 Qian, L. J.; Tong, B.; Zhi, J. G.; Yang, F.; Shen, J. B.; Shi, J. B.; Dong, Y. P., Acta Chimi. Sin. 2008, 66, 1134–1138
28 Hong, Y.; H?ussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z., Chemistry 2008, 14, 6428–6437
doi: 10.1002/chem.200701723 pmid:18512826
29 An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y., J. Am. Chem. Soc. 2002, 124, 14410–14415
doi: 10.1021/ja0269082 pmid:12452716
30 Itami, K.; Yoshida, J., Chemistry 2006, 12, 3966–3974
doi: 10.1002/chem.200500958 pmid:16380951
31 Yang, J.; Aschemeyer, S.; Martinez, H. P.; Trogler, W. C., Chem. Commun. 2010, 46, 6804–6806
doi: 10.1039/c0cc01906b pmid:20737079
32 Qin, A. J.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J. Z.; Tang, B. Z., Macromolecules 2009, 42, 1421–1424
doi: 10.1021/ma8024706
33 Liu, L.; Zhang, G. X.; Xiang, J. F.; Zhang, D. Q.; Zhu, D. B., Org. Lett. 2008, 10, 4581–4584
doi: 10.1021/ol801855s pmid:18785747
34 Qian, L. J.; Tong, B.; Shen, J. B.; Shi, J. B.; Zhi, J. G.; Dong, Y. Q.; Yang, F.; Dong, Y. P.; Lam, J. W. Y.; Liu, Y.; Tang, B. Z., J. Phys. Chem. B 2009, 113, 9098–9103
doi: 10.1021/jp900665x pmid:19522490
35 Lu, L. D.; Helgeson, R.; Jones, R. M.; McBranch, D.; Whitten, D., J. Am. Chem. Soc. 2002, 124, 483–488
doi: 10.1021/ja011517t pmid:11792220
36 Saito, K., J. Phys. Chem. B 2001, 105, 4235–4238
doi: 10.1021/jp003141w
37 Shankar, S. S.; Patil, U. S.; Prasad, B. L. V.; Sastry, M., Langmuir 2004, 20, 8853–8857
doi: 10.1021/la0495837 pmid:15379517
38 Henglein, A.; Brancewica, C., Chem. Mater. 1997, 9, 2164–2167
doi: 10.1021/cm970258x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed