Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (1) : 31-37    https://doi.org/10.1007/s11458-011-0229-6
RESEARCH ARTICLE
The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast
Chao FENG1, Xiguang CHEN1(), Jing ZHANG1, Gangzheng SUN1, Xiaojie CHENG1, Zhiguo WANG2, Hyun-Jin PARK3
1. College of Marine Life Science, Ocean University of China, Qingdao 266003, China; 2. The Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, China; 3. The Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
 Download: PDF(274 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, different molecular weight (MW) carboxymethyl chitosans (CM-chitosan) nanoparticles were prepared by ionic gelification. The particle size of nanoparticles was around 180–250 nm by dynamic light scattering (DLS) and transmission electron microscope (TEM). With the increase of CM-chitosan nanoparticles concentration from 2 to 200 μg/mL, the growth inhibition effects on the keloid fibroblast increased. At the concentration of 100 μg/mL, CM-chitosan nanoparticles with MW 6.3 kDa had a significant inhibitory effect (inhibition ratio 48.79%) of the proliferation of keloid fibroblast. Compared with CM-chitosan solution, the inhibition of CM-chitosan nanoparticles were lower in prior period and similar in later period. By analyzing the different effects of chitosan, CM-chitosan solution and CM-chitosan nanoparticles on proliferation of keloid fibroblast, we have found that the carboxylmethyl groups of CM-chitosan play an important role in inhibition of proliferation of keloid fibroblast.

Keywords carboxymethyl-chitosan      nanoparticle      keloid fibroblast      proliferation     
Corresponding Author(s): CHEN Xiguang,Email:xgchen@ouc.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Chao FENG,Xiguang CHEN,Jing ZHANG, et al. The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast[J]. Front Chem Chin, 2011, 6(1): 31-37.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0229-6
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I1/31
CM-chitosanCM-chitosan /mg·mL-1CaCl2/mg·mL-1Particle size/nmPI
MW/kDaDSDD
1960.910.770.51.0258.7±5.80.133
160.880.810.52.5227.1±5.30.166
7.50.920.790.54.0189.3±7.20.049
6.30.940.780.54.5181.1±6.40.163
Tab.1  Reaction solvents, typical mean particle sizes and polydispersity index (PI) of CM-chitosan nanoparticles samples ( = 3)
Fig.1  Particle size distribution of CM-chitosan nanoparticles with different MWs ( = 3) (a) 196 kDa; (b) 16 kDa; (c) 7.5 kDa; (d) 6.3 kDa
Fig.2  TEM images of CM-chitosan nanoparticles with different MWs (a) CM-chitosan nanoparticles 196 kDa; (b) CM-chitosan nanoparticles 16 kDa; (c) CM-chitosan nanoparticles 7.5 kDa; (d) CM-chitosan nanoparticles 6.3 kDa
Fig.3  Effects of concentration of CM-chitosan nanoparticles with different MWs on the proliferation of the keloid fibroblast. Cell culture was in media of DMEM contained 10% BCS, 96-well tissue culture plate; initial cell number was 5 × 10 cells per well; 5% CO and 37°C. Cell numbers were determined after four days of incubation by MTT method ( = 6). Control group contained 40 μg/mL CaCl. Cell count= (OD of test) / (OD of control)
Fig.4  Effects of exposure time of CM-chitosan nanoparticles with different MWs on the proliferation of the keloid fibroblast. Cell culture was in media of DMEM contained 10% BCS, 96-well tissue culture plate; initial cell number was 4 × 10 cells per well, 5% CO and 37°C.Control group contained 40 μg/mL CaCl. Cell count= (OD of test) / (OD of control). Test Groups contained 100 μg/mL CM-chitosan nanoparticles ( = 6)
Fig.5  Effects of CM-chitosan nanoparticles and CM-chitosan solution on the proliferation of the keloid fibroblast. (I) MW 196 kDa; (II) MW 16 kDa; (III) MW 7.5 kDa. Cell numbers were determined after four days of incubation by MTT method ( = 6). Cell culture was in media of DMEM contained 10% BCS, 96-well tissue culture plate; initial cell number was 6 × 10 cells per well; 5% CO and 37°C.Control group contained 40 μg/ml CaCl. Test Groups contained 100 μg/mL CM-chitosan solution or CM-chitosan nanoparticles.
Fig.6  Effects of chitosan, CM-chitosan solution and CM-chitosan nanoparticles on the proliferation of the keloid fibroblast after specific periods (0 d, 1 d, 2 d, 4 d, 6 d) of incubation. Cell culture was in media of DMEM contained 10% BCS, 96-well tissue culture plate, initial cell number was 5 × 10 cells per well, 5% CO and 37°C. Control group contained 40 μg/mL CaCl. Cell count= (OD of test) / (OD of control). Test Groups contained 100 μg/mL chitosan CM-chitosan solution or CM-chitosan nanoparticles ( = 6)
1 Gopalakannan, A.; Arul , V., Aquaculture 2006, 255, 179–187
doi: 10.1016/j.aquaculture.2006.01.012
2 Qin, C.; Du, Y.; Xiao, L.; Li, Z.; Gao, X., Int. J. Biol. Macromol. 2002, 31, 111–117
doi: 10.1016/S0141-8130(02)00064-8 pmid:12559434
3 Qin, C.; Zhou, B.; Zeng, L.; Zhang, Z.; Liu, Y.; Du, M.; Xiao, L., Food Chem. 2004, 84, 107–115
doi: 10.1016/S0308-8146(03)00181-X
4 Zheng, L. Y.; Zhu, J. F., Carbohydr. Polym. 2003, 54, 527–530
doi: 10.1016/j.carbpol.2003.07.009
5 Lim, S. H.; Hudson, S. M., Carbohydr. Res. 2004, 339, 313–319
doi: 10.1016/j.carres.2003.10.024 pmid:14698889
6 Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X., Carbohydr. Res. 2004, 339, 2693–2700
pmid:15519328
7 Jung, E. J.; Youn, D. K.; Lee, S. H.; No, H. K.; Ha, J. G.; Prinyawiwatkul, W., Int. J. Food Sci. Technol. 2010, 45, 676–682
doi: 10.1111/j.1365-2621.2010.02186.x
8 Kong, M.; Chen, X.; Xue, Y.; Liu, C.; Yu, L.; Ji, Q.; Cha, D. S.; Park, H. J., Front. Mater. Sci. China 2008, 2, 214–220
doi: 10.1007/s11706-008-0036-2
9 Ueno, H.; Yamada, H.; Tanaka, I.; Kaba, N.; Matsuura, M.; Okumura, M.; Kadosawa, T.; Fujinaga, T., Biomaterials 1999, 20, 1407–1414
doi: 10.1016/S0142-9612(99)00046-0 pmid:10454012
10 Muzzarelli, R. A. A., Carbohydr. Polym. 2009, 76, 167–182
doi: 10.1016/j.carbpol.2008.11.002
11 Chen, X. G.; Wang, Z.; Liu, W. S.; Park, H. J., Biomaterials 2002, 23, 4609–4614
doi: 10.1016/S0142-9612(02)00207-7 pmid:12322982
12 Hjerde, R. J. N., V?rum, K. M.; Grasdalen, H.; Tokura, S.; Smidsr?d, O., BoldItalicarbohydr. Polym. 1997, 34, 131–139
doi: 10.1016/S0144-8617(97)00113-6
13 Abdull Rasad, M. S. B.; Halim, A. S.; Hashim, K.; Rashid, A. H. A.; Yusof, N.; Shamsuddin, S., Carbohydr. Polym. 2010, 79, 1094–1100
doi: 10.1016/j.carbpol.2009.10.048
14 Dev, A.; Mohan, J. C.; Sreeja, V.; Tamura, H.; Patzke, G. R.; Hussain, F.; Weyeneth, S.; Nair, S. V.; Jayakumar, R., Carbohydr. Polym. 2010, 79, 1073–1079
doi: 10.1016/j.carbpol.2009.10.038
15 Shi, X.; Du, Y.; Yang, J.; Zhang, B.; Sun, L., J. Appl. Polym. Sci. 2006, 100, 4689–4696
doi: 10.1002/app.23040
16 Anitha, A.; Divya Rani, V. V.; Krishna, R.; Sreeja, V.; Selvamurugan, N.; Nair, S. V.; Tamura, H.; Jayakumar, R., Carbohydr. Polym. 2009, 78, 672–677
doi: 10.1016/j.carbpol.2009.05.028
17 Alaish, S. M.; Yager, D. R.; Diegelmann, R. F.; Cohen, I. K., J. Pediatr. Surg. 1995, 30, 949–952
doi: 10.1016/0022-3468(95)90319-4 pmid:7472951
18 Butler, P. D.; Longaker, M. T.; Yang, G. P., J. Am. Coll. Surg. 2008, 206, 731–741
doi: 10.1016/j.jamcollsurg.2007.12.001 pmid:18387480
19 Jagadeesan, J.; Bayat, A., Int. J. Surg. 2007, 5, 278–285
doi: 10.1016/j.ijsu.2006.04.007 pmid:17660136
20 Tuan, T. L.; Nichter, L. S., Mol. Med. Today 1998, 4, 19–24
doi: 10.1016/S1357-4310(97)80541-2 pmid:9494966
21 Sch?cke, H.; D?cke, W. D.; Asadullah, K., Pharmacol. Ther. 2002, 96, 23–43
doi: 10.1016/S0163-7258(02)00297-8 pmid:12441176
22 Chen, X. G.; Park, H. J., Carbohydr. Polym. 2003, 53, 355–359
doi: 10.1016/S0144-8617(03)00051-1
23 Sun, G.; Chen, X.; Li, Y.; Zheng, B.; Gong, Z.; Sun, J.; Chen, H.; Li, J.; Lin, W., Front. Mater. Sci. China 2008, 2, 105–112
doi: 10.1007/s11706-008-0019-3
24 Shimojoh, M.; Fukushima, K.; Kurita, K., Carbohydr. Polym. 1998, 35, 223–231
doi: 10.1016/S0144-8617(97)00244-0
25 Wan, A. C.; Khor, E.; Wong, J. M.; Hastings, G. W., Biomaterials 1996, 17, 1529–1534
doi: 10.1016/0142-9612(96)89778-X pmid:8853124
26 Hansen, M. B.; Nielsen, S. E.; Berg, K., J. Immunol. Methods 1989, 119, 203–210
doi: 10.1016/0022-1759(89)90397-9 pmid:2470825
27 Calvo, P.; Remu?án-López, C.; Vila-Jato, J. L.; Alonso, M. J., J. Appl. Polym. Sci. 1997, 63, 125–132
doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
[1] Rong CHEN, Dinghai HUANG. Preparation of polymer nanoparticles, and the effect of nanoconfinement on glass transition, structural relaxation and crystallization[J]. Front Chem Chin, 2011, 6(4): 332-340.
[2] Xiaoqi FU, Shuang WANG, Qian ZHAO, Tingshun JIANG, Hengbo YIN. Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection[J]. Front Chem Chin, 2011, 6(3): 206-212.
[3] Peng YANG, Wei CHEN, Changchun WANG. Preparation and in vitro cytotoxicity study of poly(aspartic acid) stabilized magnetic nanoparticles[J]. Front Chem Chin, 2011, 6(1): 9-14.
[4] Nü WANG, Yong ZHAO, Lei JIANG, . Bioinspired synthesis and preparation of multilevel micro/nanostructured materials[J]. Front. Chem. China, 2010, 5(3): 247-261.
[5] Yanyan WANG, Bin LIU, . Conjugated polyelectrolyte amplified fluorescent assays with probe functionalized silica nanoparticles for chemical and biological sensing[J]. Front. Chem. China, 2009, 4(4): 325-334.
[6] Caihong NIU, Ying WU, Zhenping WANG, Zheng LI, Rong LI. Synthesis and shapes of gold nanoparticles by using transition metal monosubstituted heteropolyanions as photocatalysts and stabilizers[J]. Front Chem Chin, 2009, 4(1): 44-47.
[7] Xu Hongyan, WU Huaqiang, XU Dongmei, WANG Qianyi. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution[J]. Front. Chem. China, 2008, 3(2): 213-217.
[8] SU Bitao, WANG Ke, BAI Jie, MU Hongmei, TONG Yongchun, MIN Shixiong, SHE Shixiong, LEI Ziqiang. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation[J]. Front. Chem. China, 2007, 2(4): 364-368.
[9] LIU Haibo, CHEN Chengxiang, TAN Fang, ZHUANG Zhixia, WANG Xiaoru, YANG Huanghao, YAN Qingpi. A study of using luminophore-doped silica nanoparticles as fluorescent probe in protein microarray assay[J]. Front. Chem. China, 2007, 2(2): 199-203.
[10] LIU Kaiyi, WANG Zhaoqun. A novel method for preparing monodispersed polystyrene nanoparticles[J]. Front. Chem. China, 2007, 2(1): 17-20.
[11] ZANG Jinxin, ZHAO Gaoling, HAN Gaorong. Preparation of CdS nanoparticles by hydrothermal method in microemulsion[J]. Front. Chem. China, 2007, 2(1): 98-101.
[12] Yang Yuying, Hu Zhongai, Shang Xiuli, Lv Renjiang, Kong Chao, Zhao Hongxiao. A New Method for the Preparation of Co3O4 Nanoparticles[J]. Front. Chem. China, 2006, 1(1): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed