Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (2) : 127-141    https://doi.org/10.1007/s11458-011-0236-7
RESEARCH ARTICLE
Vibrational dynamics of Fe-based glassy alloys
Aditya M. VORA()
Humanities and Social Science Department, STBS College of Diploma Engineering, Surat 395006, India
 Download: PDF(410 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The well recognized model potential is used to investigate the vibrational properties of four Fe-based binary glassy alloys viz. Fe90Zr10, Fe80B20, Fe83B17 and Fe80P20. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves (PDC). Three theoretical approaches given by Hubbard-Beeby (HB), Takeno-Goda (TG) and Bhatia-Singh (BS) are used in the present study to compute the PDC. Six local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) and Sarkar et al.’s local field factor (SLFF) based excgange and correlation function are employed to see the effect of exchange and correlation in the aforesaid properties.

Keywords pseudopotential      pair potential      phonon dispersion curves (PDC)      Fe-based binary glassy alloys      static properties      vibrational properties     
Corresponding Author(s): VORA Aditya M.,Email:voraam@yahoo.com   
Issue Date: 05 June 2011
 Cite this article:   
Aditya M. VORA. Vibrational dynamics of Fe-based glassy alloys[J]. Front Chem Chin, 2011, 6(2): 127-141.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0236-7
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I2/127
GlassesZΩO/a.u.rC/a.u.ZdNCrd/a.u.
Fe90 Zr103.1085.390.65656.108.401.63
Fe80B203.0072.460.63635.408.201.41
Fe83B173.0073.450.63895.578.171.42
Fe80P203.4091.880.63155.408.201.41
Tab.1  Input parameters and other constants.
Fig.1  Pair potentials for (a) FeZr, (b) FeB, (c) FeB and (d) FeP metallic glasses
Fig.2  Pair potentials for Fe-based metallic glasses using SLFF-local field correction function
Fig.3  Screening dependence of the phonon dispersion curves for FeZr metallic glasses using HB approach
Fig.4  Screening dependence of the phonon dispersion curves for FeB metallic glasses using HB approach
Fig.5  Screening dependence of the phonon dispersion curves for FeB metallic glasses using HB approach
Fig.6  Screening dependence of the phonon dispersion curves for FeP metallic glasses using HB approach
Fig.7  Phonon dispersion curves for (a) FeZr, (b) FeB, (c) FeB and (d) FeP metallic glasses using HB, TG and BS approaches with S-local field correction function
Fig.8  Phonon dispersion curves for (a) FeZr, (b) FeB, (c) FeB and (d) FeP metallic glasses using HB, TG and BS approaches with SLFF-local field correction function
Fig.9  Screening dependence of the low temperature specific heat for FeZr metallic glasses computed from HB, TG and BS approaches
Fig.10  Screening dependence of the low temperature specific heat for FeB metallic glasses computed from HB, TG and BS approaches
Fig.11  Screening dependence of the low temperature specific heat for FeB metallic glasses computed from HB, TG and BS approaches
Fig.12  Screening dependence of the low temperature specific heat for FeP metallic glasses computed from HB, TG and BS approaches
App.SCRνL /(105 cm·s-1)νT /(105 cm·s-1)BT /(1011 dyne·cm-2)G /(1011 dyne·cm-2)σY /(1011 dyne·cm-2)θD/K
HBH2.80731.62083.41132.04680.24995.1170230.01
T1.70720.98561.26160.75690.25001.8924139.87
IU2.08711.20501.88571.13140.24992.8285171.00
F2.06451.19201.84501.10700.24992.7675169.15
S1.85621.07171.49150.89490.24992.2373152.09
TGH3.75091.66958.06692.17170.37655.9785240.80
T3.38551.91865.10632.86820.26347.2476272.71
IU3.57931.88496.29082.76840.30817.2428269.41
F3.61781.92276.35732.88050.30327.5076274.63
S2.87511.69873.44282.24840.23185.5394240.56
BSH8.70303.776744.197911.11350.384030.7620545.29
T8.86983.955645.044712.19140.375933.5475570.48
IU8.85073.929544.994612.03120.377233.1399566.83
F8.83013.911844.855111.92310.377932.8580564.33
S8.91354.000745.277912.47090.373934.2667576.83
Expt [11].16.66
Others [11]4.86.22.81 2.359.6023.86.054.230.23 0.4115.0112.00
Tab.2  Thermodynamic and elastic properties of FeZrglass
App.SCRνL /(105 cm·s-1)νT /(105 cm·s-1)BT /(1011 dyne·cm-2)G /(1011 dyne·cm-2)σY /(1011 dyne·cm-2)θD/K
HBH3.85702.22685.98493.59090.25008.9773333.79
T3.38611.95504.61282.76770.24996.9192293.04
IU3.67472.12165.43243.25940.24998.1486318.01
F3.66052.11345.39053.23430.24998.0857316.78
S1.66190.95951.11110.66660.24991.6666143.82
TGH4.85302.083012.86523.14200.38718.7164317.80
T4.69372.256911.03513.68850.34969.9563342.58
IU4.91142.274712.47183.74700.363510.2178345.93
F4.94322.308812.54743.86020.360510.5035350.98
S3.29671.89104.41752.58950.25486.4987283.61
BSH9.49473.557053.06449.16210.418425.9906545.01
T9.61193.706753.63609.94960.412728.1106567.51
IU9.57533.666653.41389.73510.414127.5327561.47
F9.57253.666253.37849.73310.414127.5263561.41
S9.64533.740553.859410.13170.411528.6016572.59
Expt [18].4.7731.410.650.31.69
Others [18]5.153.051.041.380.688 0.500.2291.693
Tab.3  Thermodynamic and elastic properties of FeB glass
App.SCRνL /(105 cm·s-1)νT /(105 cm·s-1)BT /(1011 dyne·cm-2)G /(1011 dyne·cm-2)σY /(1011 dyne·cm-2)θD/K
HBH3.75632.16875.76133.45680.25008.6419323.60
T3.12071.80183.97652.38590.24995.9648268.85
IU3.43221.98164.80992.88600.24997.2149295.68
F3.41701.97284.76742.86040.25007.1511294.37
S1.50260.86750.92190.55320.25001.3829129.45
TGH4.75062.030212.54783.02930.38838.4110308.39
T4.47612.20659.95403.57830.33959.5861332.96
IU4.69312.219411.36073.62010.35609.8176335.65
F4.72592.253811.43683.73320.352810.1006340.70
S3.26621.87104.41052.57270.25586.4617279.37
BSH9.31563.490151.84418.95220.418425.3949532.34
T9.43013.636452.39949.71860.412727.4582554.23
IU9.39383.596552.17929.50650.414126.8867548.26
F9.39113.596252.14459.50480.414126.8811548.20
S9.46313.669652.61939.89710.411527.9395559.21
Expt [19].17.020.6555±90
Others [19]6.04.010.224.447599
Tab.4  Thermodynamic and elastic properties of FeB glass
App.SCRνL /(105 cm·s-1)νT /(105 cm·s-1)BT /(1011 dyne·cm-2)G /(1011 dyne·cm-2)σY /(1011 dyne·cm-2)θD/K
HBH3.52222.03354.27462.56480.25006.4119281.62
T2.86541.65432.82901.69740.25004.2434229.10
IU3.17211.83143.46702.08020.25005.2005253.62
F3.15691.82273.43402.06040.24995.1510252.41
S1.01640.58680.35600.21360.25000.534081.27
TGH4.79452.127710.51352.80780.37747.7348299.52
T4.53872.38458.07443.52650.30949.2351332.64
IU4.73842.38829.20923.53720.32979.4073334.03
F4.78002.42829.29503.65680.32619.6986339.46
S3.57552.04164.48192.58520.25816.5048283.00
BSH9.03023.037842.94315.72340.436216.4399431.05
T9.13103.177443.36146.26160.431117.9222450.57
IU9.09703.139743.17416.11380.432417.5148445.29
F9.10363.149243.19896.15090.432017.6165446.62
S9.14483.190943.44696.31480.430718.0690452.45
Tab.5  Thermodynamic and elastic properties of Fe P glass
1 Vora, A. M.; Patel, M. H.; Gajjar, P. N.; Jani, A. R., Solid State Phys. 2003, 46, 315
2 Gajjar, P. N.; Vora, A. M.; Jani, A. R., In: Proceedings of the 9th Asian Pacific Physics Conference Hanoi, The Gioi Publication, Vietnam 2006, 429
3 Vora, A. M., Chin. Phys. Lett. 2006, 23, 1872–1875
doi: 10.1088/0256-307X/23/7/060
4 Vora, A. M., J. Mater. Sci. 2007, 43, 935–940
doi: 10.1007/s10853-006-0016-9
5 Vora, A. M., Acta Physiol. Pol. 2007, A111, 859
6 Aditya, M. Vora, J. Non-Cryst., Sol. 2006, 352, 3217
7 Vora, A. M., Front. Mater. Sci. China 2007, 1, 366–378
doi: 10.1007/s11706-007-0068-z
8 Vora, A. M., FIZIKA 2007, A16, 187
9 Vora, A. M., Rom. J. Physiol. 2008, 53, 517
10 Vora, A. M., Front. Mater. Sci. China 2009, 3, 285–300
doi: 10.1007/s11706-009-0045-9
11 Bhandari, D.; Prasad, A.; Gupta, A.; Saxena, N. S., in The Physics of Disordered Materials, Saksena, M. P., Saxena, N. S., Bhandari, D. (Eds.), NISCOM, New Delhi , 1997, pp. 86–90 .
12 Hubbard, J.; Beeby, J. L.; J. Phys. C: Solid State Phys . 1969, 2, 556–571
doi: 10.1088/0022-3719/2/3/318
13 Bhatia, A. B.; Singh, R. N., Phys. Rev. B 1985, 31, 4751–4758
doi: 10.1103/PhysRevB.31.4751
14 Hausleitner, Ch.; Hafner, J.; Non-Cryst, J., Sol. 1992, 144, 175
15 Wildes, A. R.; Stewart, J. R.; Cowlam, N.; Al-Heniti, S.; Kiss, L. F.; Kemény, T., J. Phys. Condens. Matter 2003, 15, 675–691
doi: 10.1088/0953-8984/15/4/308
16 Hafner, J.; Tegze, M.; Becker, Ch., Phys. Rev. B 1994, 49, 285–298
doi: 10.1103/PhysRevB.49.285
17 Hausleitner, Ch.; Hafner, J., Phys. Rev. B 1993, 47, 5689–5709
doi: 10.1103/PhysRevB.47.5689
18 Gupta, A.; Bhandari, D.; Saxena, N. S., Ind. J. Pure & Appl. Phys. 1998, 36, 366
19 Saxena, N. S.; Non-Cryst, J., Sol. 1996, 196, 37
20 Harrison W. A., Elementary Electronic Structure, World Scientific, Singapore (1999)
21 Taylor, R.; Phys, J., F: Met. Phys. 1978, 8, 1699–1702
doi: 10.1088/0305-4608/8/8/011
22 Ichimaru, S.; Utsumi, K., Phys. Rev. B 1981, 24, 7385–7388
doi: 10.1103/PhysRevB.24.7385
23 Farid, B.; Heine, V.; Engel, G.; Robertson, I. J., Phys. Rev. B 1993, 48, 11602–11621
doi: 10.1103/PhysRevB.48.11602
24 Sarkar, A.; Sen, D. S.; Haldar, S.; Roy, D., Mod. Phys. Lett. B 1998, 12, 639
doi: 10.1142/S0217984998000755
25 Sarkar, A.; Haldar, S.; Roy, D.; Sen, D., Acta Physiol. Pol. 2004, A106, 497
26 Takeno, S.; Goda, M., Prog. Theor. Phys. 1971, 45, 331–352
doi: 10.1143/PTP.45.331
27 Takeno, S.; Goda, M., Prog. Theor. Phys. 1972, 47, 790–806
doi: 10.1143/PTP.47.790
28 Shukla, M. M.; Campanha, J. R., Acta Physiol. Pol. 1998, A94, 655
29 Wills, J. M.; Harrison, W. A., Phys. Rev. B 1983, 28, 4363-4373
doi: 10.1103/PhysRevB.28.4363
30 Hafner, J.; Heine, V.; Phys, J., F: Met. Phys. 1983, 13, 2479–2501
doi: 10.1088/0305-4608/13/12/008
31 Kovalenko, N. P.; Krasny, Y. P., Physica B 1990, 162, 115–121
doi: 10.1016/0921-4526(90)90042-S
32 Hausleitner, Ch.; Turek, I.; Non-Cryst, J., Sol. 1993, 156-158, 210
33 Bretonnet, J. L.; Derouiche, A., Phys. Rev. B 1990, 43, 8924–8929
doi: 10.1103/PhysRevB.43.8924
34 Thorpe, M. F.; Non-Cryst, J., Sol. 1983, 57, 355
[1] Aditya M. VORA. Vibrational dynamics of Ni-glassy alloys[J]. Front Chem Chin, 2011, 6(3): 227-242.
[2] Aditya M. VORA. Phonon dynamics of glassy copper alloys[J]. Front Chem Chin, 2011, 6(1): 54-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed