Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (2) : 142-146    https://doi.org/10.1007/s11458-011-0237-6
RESEARCH ARTICLE
Applying density functional theory on tautomerism in 3,4-dihydropyrimidin-2(1H)-ones
Asadollah FARHADI(), Mohammad Ali TAKASSI
Faculty of Science, University of Petroleum Technology Ahwaz, Ahwaz 61981-44471, Iran
 Download: PDF(180 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the present study, the density functional theory (DFT) and Gibbs free energy calculations were performed to investigate the stability and tautomerism of C4-substituted-3,4-dihydropyrimidin-2(1BoldItalic)-ones. Three different forms are possible for the ethyl 3,4-dihydropyrimidinones (ethyl 4-aryl-6-methyl-3,4-dihydropyrimidin-2(1BoldItalic)-one-5-carboxylates, ethyl 4-aryl-2-hydroxy-6-methyl-1,4-dihydropyrimidine-5-carboxylates and ethyl 4-aryl-2-hydroxy-6-methyl-3,4-dihydropyrimidine-5-carboxylates) forms that the most stable form is ethyl 4-aryl-6-methyl-3,4-dihydropyrimidin-2(1BoldItalic)-one-5-carboxylates (keto-form). The obtained data showed that the substitution on the C4-substitut position can be effective on the equilibrium constant (BoldItaliceq).

Keywords Gibbs free energy      density functional theory (DFT)      tautomerism      dihydropyrimidin-2(1H)-ones      Keto-Form     
Corresponding Author(s): FARHADI Asadollah,Email:farhadichem@yahoo.com   
Issue Date: 05 June 2011
 Cite this article:   
Mohammad Ali TAKASSI,Asadollah FARHADI. Applying density functional theory on tautomerism in 3,4-dihydropyrimidin-2(1H)-ones[J]. Front Chem Chin, 2011, 6(2): 142-146.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0237-6
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I2/142
Fig.1  General structure of the ethyl ester forms of 1,4-dihydropyrimidines and 3,4-dihydropyrimidin-2(1)-ones with aryl-up conformation and the numbering scheme used in this work.
Fig.2  Tautomerism between ethyl 6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1)-one-5-carboxylate () and ethyl 2-hydroxy-6-methyl-4-phenyl-3,4-dihydropyrimidinone-5-carboxylate ()
ΔHf°/(kJ·mol-1)ΔHeq°/(kJ·mol-1)
Comp.3,4-dihyropyrimidionesComp.1,4-dihydropyrimidinesEquilibrium reaction
a-629.9a-555.974.0
b-706.8b-632.374.5
c-815.0c-740.075.0
d-813.2d-739.673.6
e-816.2e-734.981.3
f-630.2f-558.172.1
g-629.7g-558.671.1
h-615.3h-545.470.0
i-539.2i-466.972.2
j-538.9j-468.170.9
k-531.5k-461.669.9
l-605.6l-536.069.5
M-604.2m-536.867.3
n-572.4n-504.168.2
Tab.1  The formation and the equilibrium reaction enthalpies of some 3,4-dihyropyrimidi-2(1)-ones and 1,4-dihydropyrimidines calculated based on the B3LYP/6-31G**.
ΔGf°/(kJ·mol-1)ΔGeq°/(kJ·mol-1)ΔGeq°/(kJ·mol-1)Equilibrium constant
Comp.3,4-dihyropyrimidionesComp.1,4-dihydropyrimidinesEquilibrium reactionKeq
a-2304645a-230457273.51.33 × 10-13
b-2407778b-240770473.21.45 × 10-13
c-2605141c-260506674.77.90 × 10-14
d-2605140d-260506574.58.67 × 10-14
e-2605141e-260505882.92.97 × 10-15
f-3510883f-351081271.13.49 × 10-13
g-3510884g-351081569.66.22 × 10-13
h-3510867h-351079769.46.78 × 10-13
i-9052542i-905247170.93.76 × 10-13
j-9052543j-905247271.42.99 × 10-13
k-9052532k-905246170.24.91 × 10-13
l-2841361l-284129368.69.35 × 10-13
m-2841360m-284129466.72.01 × 10-12
n-2841326n-284126066.91.85 × 10-12
Tab.2  The formation and the equilibrium reaction Gibbs free energies and equilibrium constant of some 3,4-dihyropyrimidi-2(1H)-ones and 1,4-dihydropyrimidines calculated based on the B3LYP/6-31G**.
Fig.3  Tautomerism between ethyl 6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1)-one-5-carboxylate () and ethyl 2-hydroxy-6-methyl-4-phenyl-3,4-dihydropyrimidine-5-carboxylate ()
1 Biginelli, P., Gazz. Chim. Ital. 1898, 23, 360–413
2 Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.; Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Noguchi, T., J. Med. Chem. 1989, 32, 2399–2406
doi: 10.1021/jm00130a029 pmid:2552119
3 Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F., J. Med. Chem. 1990, 33, 2629–2635
doi: 10.1021/jm00171a044 pmid:2391701
4 Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; DiMarco, J. D.; Gougoutas, J.; Hedberg, A. O.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S., J. Med. Chem. 1995, 38, 119–129
doi: 10.1021/jm00001a017 pmid:7837222
5 Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A. O.; O’Reilly, B. C., J. Med. Chem. 1991, 34, 806–811
doi: 10.1021/jm00106a048 pmid:1995904
6 Grover, G. J.; Dzwonczyk, S.; McMullen, D. M.; Normandin, D. E.; Parham, C. S.; Sleph, P. G.; Moreland, S., J. Cardiovasc. Pharmacol. 1995, 26, 289–294
doi: 10.1097/00005344-199508000-00015 pmid:7475054
7 Memarian, H. R.Farhadi, A.; Sabzyan, H.; Soleymani, M., J. Photochem. Photobiol. Chem. 2010, 209, 95–103
doi: 10.1016/j.jphotochem.2009.10.012
8 Memarian, H. R.; Sabzyan, H.; Farhadi, A., Z. Naturforsch. 2009, 64b, 532–540
9 Memarian, H. R.; Sabzyan, H.; Farhadi, A., Monatsh. Chem. 2010, 141, 1203–1212
doi: 10.1007/s00706-010-0389-y
10 Kappe, C. O.; Fabian, M. F., Tetrahedron 1997, 53, 2803–2816
doi: 10.1016/S0040-4020(97)00022-7
11 Kappe, C. O.; Peters, K.; Peters, E. M., J. Org. Chem. 1997, 62, 3109–3118
doi: 10.1021/jo970121q pmid:11671693
12 Dondoni, A.; Massi, A.; Minghini, E.; Sabbatini, S.; Bertolasi, V., J. Org. Chem. 2003, 68, 6172–6183
doi: 10.1021/jo0342830 pmid:12895047
13 Marubayashi, N.; Ogawa, T.; Hamasaki, T.; Hirayama, N., J. Chem. Soc., Perkin Trans. 2 1997, 1309–1314
doi: 10.1039/a608454k
14 Ozimiński, W. P.; Dobrowolski, J. C.; Mazurek, A. P., J. Mol. Struct. THEOCHEM 2004, 680, 107–115
doi: 10.1016/j.theochem.2004.05.005
15 Trofimenko, S.; Yap, G. P. A.; Jove, F. A.; Claramunt, R. M.; García, M. á.; Santa Maria, M. D.; Alkorta, I.; Elguero, J., Tetrahedron 2007, 63, 8104–8111
doi: 10.1016/j.tet.2007.06.007
16 Alkorta, I.; Blanco, F.; Elguero, J., Tetrahedron 2010, 66, 5071–5081
doi: 10.1016/j.tet.2010.04.119
17 Kappe, C. O., Tetrahedron 1993, 49, 6937–6963
18 Dondoni, A.; Massi, A., Tetrahedron Lett. 2001, 42, 7975–7978
doi: 10.1016/S0040-4039(01)01728-2
19 Mandhane, P. G.; Joshi, R. S.; Nagargoje, D. R.; Gill, C. H., Tetrahedron Lett. 2010, 51, 3138-3140
doi: 10.1016/j.tetlet.2010.04.037
20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ciolowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian 98, Gaussian Inc., Pittsburg PA , 1998
[1] Ruizhou ZHANG, Xiaohong LI, Xianzhou ZHANG. Molecular structure and vibrational spectra of phenobaraitone by density functional theory and ab initio hartree-Fock calculations[J]. Front Chem Chin, 2011, 6(4): 358-366.
[2] Xiaohong LI, Ruizhou ZHANG, Xiangdong YANG, . QSAR study on fluoroquinolones as antibacterial agents active for Pseudomonas aeruginosa[J]. Front. Chem. China, 2010, 5(1): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed